Effect of Impact Points on Interfering Jets in Reactive Armor of Double-Wedge Charges
-
摘要: 为了研究双层楔形装药反应装甲中线上不同着靶点位置对射流干扰的影响,利用模拟仿真软件LSDYNA-3D对其干扰射流的能力进行评估,分别对侵彻过程中飞板的运动状态、杵体断裂情况和接触后效靶板的瞬时速度、侵彻靶板的深度和开坑等进行分析,并通过试验进行对比分析。研究发现:着靶点在双层楔形装药反应装甲中线顶端区域时,受边界效应影响严重,双层楔形装药反应装甲干扰射流作用不明显,杵体在接触靶板前未断裂,致使靶板被击穿;着靶点在160 mm处时,射流侵彻双层楔形装药反应装甲后,杵体断裂时间最早,且被切割成多段并发生明显位移,杵体接触靶板瞬时速度最低,在后效靶板上的侵彻深度最小,抗侵彻效果优于传统双层平板装药。模拟计算与试验测量结果最大误差不超过10%,符合较好。Abstract: In order to study the influence of impact points in the midline of a double-wedge charge reaction armor on jet interference, their abilities to interference jet are evaluated by the simulation software LSDYNA-3D.The important results such as the movement state of the flyer during the penetration process, the fracture condition of the slug, the instantaneous velocity of the target after exposure, the penetration depth of the target, and the opening pit were analyzed.The simulation results were compared with the experimental results as well.It was found that the impact of the boundary effect is significant when the target is in the top of the armored midline of the double-wedge charge.The impact of the double-wedge charge on the jet is less significant, the slug cannot break before reaching the target plate, leading to the breakdown of the target plate.For the impact point of 160 mm, the jet penetrates into the armor of the double wedge charge and the slug rupture time is earliest compared to the other impact points.Moreover, the slug is cut into multiple segments with significant displacement and the lowest instantaneous speed when colliding with the target plate, leading to the minimum penetration depth.Therefore the anti-penetration performance is superior to the traditional double-layer flat charge.The maximum error between the simulation results and the experimental measurement is less than 10% and therefore they agree with each other.
-
Key words:
- wedge charge /
- reactive armor /
- shaped jet /
- impact points
-
表 1 不同着靶点处的试验结果
Table 1. Experimental results from different impact points
Impact point Penetration depth/mm Penetration size/(mm×mm) B 28.0 16×20 C 28.3 17×18 O 27.4 19×33 D 14.7 17×20 E Breakdown 16×26 表 2 铜和钢材料模型及其状态方程参数
Table 2. Material model and equation of state parameters for copper and steel
Material ρ/(g·cm-3) E/GPa μ A/MPa B/MPa C n m Cu 8.93 138 0.35 90 292 0.250 0.31 1.09 Steel 7.80 210 0.22 350 300 0.014 0.26 1.03 表 3 8701炸药材料模型及其状态方程参数
Table 3. Material model and equation of state parameters for explosive 8701
ρ/(g·cm-3) D/(m·s-1) A/GPa B/GPa R1 R2 ξ 1.787 8 390 581.4 6.801 4.1 1.0 0.35 表 4 夹层炸药PBX 9502材料模型及其状态方程参数
Table 4. Material model and equation of state parameters for explosive PBX 9502
ρ/(g·cm-3) G/GPa R1/GPa R2/GPa a b XP1 XP2 1.712 3.54 778.1 -0.05 524.2 7.678 4.2 1.1 表 5 不同着靶点处的射流侵彻结果
Table 5. Simulation results on jet penetrating target for different impact points
Point Penetration depth/mm Penetration size/(mm×mm) Exp. Sim. Exp. Sim. A 32.4 24×27 B 28.0 25.5 16×20 18×19 C 28.3 28.4 17×18 19×21 O 27.4 28.4 19×33 23×31 D 14.7 18.5 17×20 16×18 E Breakdown Breakdown 16×26 19×25 F Breakdown 28×41 -
[1] 董旭意.反应装甲对射流的干扰机理研究[D].南京: 南京理工大学, 2008.DONG X Y.Response mechanism of reactive armor to jet flow[D].Nanjing: Nanjing University of Science and Technology, 2008. [2] 姬龙.反爆炸反应装甲理论与关键技术研究[D].南京: 南京理工大学, 2013.JI L.Theory and key technology of anti explosive reactive armor[D].Nanjing: Nanjing University of Science and Technology, 2013. [3] 柳魁, 弯天琪.爆炸反应装甲对射流的干扰分析[J].黑龙江科技信息, 2015(9):33. doi: 10.3969/j.issn.1673-1328.2015.09.032LIU K, WAN T Q.Interference analysis of explosive reactive armor against jet[J].Heilongjiang Science and Technology Information, 2015(9):33. doi: 10.3969/j.issn.1673-1328.2015.09.032 [4] 刘宏伟.爆炸反应装甲飞板变形及干扰射流模型[D].南京: 南京理工大学, 2008.LIU H W.Model of deformation and interference jet for explosive reaction armour flying plate[D].Nanjing: Nanjing University of Science and Technology, 2008. [5] 毛东方, 李向东, 任丹萍.平面夹层炸药对射流干扰的数值模拟[J].兵工学报, 2007, 28(11):1306-1309. doi: 10.3321/j.issn:1000-1093.2007.11.006MAO D F, LI X D, REN D P.Numerical simulation of jet interference of plane sandwich explosives[J].Acta Armamentarii, 2007, 28(11):1306-1309. doi: 10.3321/j.issn:1000-1093.2007.11.006 [6] 周杰, 王凤英, 原诗瑶, 等.楔形装药对射流干扰的数值模拟[J].高压物理学报, 2018, 32(2):135-142. http://www.gywlxb.cn/CN/abstract/abstract2064.shtmlZHOU J, WANG F Y, YUAN S Y, et al.Numerical simulation of jet interference by wedge charge[J].Chinese Journal of High Pressure Physics, 2018, 32(2):135-142. http://www.gywlxb.cn/CN/abstract/abstract2064.shtml [7] 高永宏, 张明, 刘迎彬, 等.双层楔形装药ERA干扰聚能射流的数值模拟[J].高压物理学报, 2018, 32(6):065108. http://www.gywlxb.cn/CN/abstract/abstract2149.shtmlGAO Y H, ZHANG M, LIU Y B, et al.Numerical simulation of the interference of double-layer wedge-charge ERA on shaped jet[J].Chinese Journal of High Pressure Physics, 2018, 32(6):065108. http://www.gywlxb.cn/CN/abstract/abstract2149.shtml [8] 吴鹏, 李如江, 雷伟, 等.运动状态下聚能装药侵彻披挂反应装甲靶板的数值模拟[J].高压物理学报, 2018, 32(2):025107. http://www.gywlxb.cn/CN/abstract/abstract2065.shtmlWU P, LI R J, LEI W, et al.Numerical simulation of shaped charge penetration into reactive armor targets in motion state[J].Chinese Journal of High Pressure Physics, 2018, 32(2):025107. http://www.gywlxb.cn/CN/abstract/abstract2065.shtml [9] 黄正祥.聚能装药理论与实践[M].北京:北京理工大学出版社, 2014:376-387.HUANG Z X.Theory and practice of shaped charge[M].Beijing:Beijing Institute of Technology Press, 2014:376-387. [10] 武海军, 陈利, 王江波, 等.反应装甲对射流干扰的数值模拟研究[J].北京理工大学学报, 2006, 26(7):565-568. doi: 10.3969/j.issn.1001-0645.2006.07.001WU H J, CHEN L, WANG J B, et al.Numerical simulation study on the response of reactive armor to jet interference[J].Journal of Beijing Institute of Technology, 2006, 26(7):565-568. doi: 10.3969/j.issn.1001-0645.2006.07.001