Numerical Simulation of Residual Characteristics of Protecting Liquid Cabin Penetrated by High Velocity Cube Fragments
-
摘要: 针对高速破片侵彻液舱后的剩余特性问题,利用有限元分析软件ANSYS/LS-DYNA开展了数值模拟研究,对比分析破片侵彻垂直和倾斜液舱后速度的衰减规律以及侵彻深度的变化规律,探讨了舰艇中液舱的较优斜置角度。结果表明:液舱壁面倾斜角的存在有利于降低破片入水的瞬时速度;破片入水瞬时速度越大,在水中运动时速度衰减越快;在冲击及空泡阶段,破片侵彻深度迅速增加,且破片入水瞬时速度越大,侵彻深度增加越明显,该阶段侵彻深度仅相当于破片最终静止时侵深的10%左右。根据弹体速度衰减速率及侵彻深度的增加速率,认为倾斜60°的液舱能够达到较好的防护效果。Abstract: In this study we investigated the residual characteristics of the high velocity fragments penetrating the protective liquid cabin using finite element analysis by ANSYS/LS-DYNA, found out about the variation of the penetration depth and the velocity of the fragment after the fragments’ penetration into the vertical and inclined liquid cabins, and discussed the optimal inclination angle of the liquid tank in a ship. The results indicated that the presence of the inclination feature of the liquid cabin helps to reduce the instantaneous velocity of the fragments entering the water, and the velocity dropped faster in water with the increase of the instantaneous velocity of the fragments. In the stage of impact and cavitation, the penetration depth of the fragments rose immediately, and the larger the instantaneous velocity, the faster the increase of the penetration depth. The penetration depth in the two phases was about 10% of the final penetration. Judging by the rate of the decrease of the projectile’s velocity and that of increase of the fragments’ penetration depth, we conclude that the tank with a tilt of 60° can achieve better protection.
-
Key words:
- penetration depth /
- protecting liquid cabin /
- residual characteristics /
- finite element
-
表 1 数值模型与试验工况
Table 1. Numerical models and experimental condition
Case θ/(°) v0/(m·s–1) vw/(m·s–1) Deviation/% Experiment[12] Simulation 1 0 1 105.0 286.0 278 –3.0 2 0 1 231.2 462.7 456 –1.4 3 30 1 058.1 202.9 200 –1.4 4 30 1 290.3 385.9 384 –0.5 表 2 弹体初速与侵彻深度的关系
Table 2. Initial velocity vs. penetration depth
Case θ/(°) v0/(m·s-1) P100 m/s/mm Pfinal/mm (P100 m/s/Pfinal)/% 1 0 1 105.0 41.2 375.1 11.0 2 0 1 231.2 37.1 305.0 12.2 3 30 1 058.1 20.0 234.2 8.5 4 30 1 290.3 45.4 333.4 13.6 表 3 侵彻角度与弹体入水瞬时速度及侵彻深度的关系
Table 3. Penetration angle vs. instantaneous velocity and penetration depth
Case θ/(°) vw/(m·s-1) P100 m/s/mm Case θ/(°) vw/(m·s-1) P100 m/s/mm 5 0 447 56.0 10 25 352 49.3 6 5 436 58.9 11 30 325 31.6 7 10 421 54.3 12 35 295 18.5 8 15 407 55.9 13 40 0 0 9 20 377 47.8 -
[1] MCMILLEN J H. Shock wave pressures in water produced by impact of small spheres [J]. Physical Review, 1945, 68(9/10): 198–209. [2] MCMILLEN J H, HARVEY E N. A spark shadowgraphic study of body waves in water [J]. Journal of Applied Physics, 1946, 17(7): 541–555. doi: 10.1063/1.1707751 [3] TOWNSEND D, PARK N, DEVALL P M. Failure of fluid dilled structures due to high velocity fragment impact [J]. International Journal of Impact Engineering, 2003, 29: 723–733. doi: 10.1016/j.ijimpeng.2003.10.019 [4] DISIMILE P J, SWANSON L A, TOY N. The hydrodynamic ram pressure generated by spherical projectiles [J]. International Journal of Impact Engineering, 2009, 36(6): 821–829. doi: 10.1016/j.ijimpeng.2008.12.009 [5] DELETOMBE E, FABIS J, DUPAS J, et al. Experimental analysis of 7.62 mm hydrodynamic ram in containers [J]. Journal of Fluids and Structures, 2013, 37: 1–21. doi: 10.1016/j.jfluidstructs.2012.11.003 [6] 唐廷, 朱锡, 侯海量, 等. 高速破片在防雷舱结构中引起的冲击荷载的理论研究 [J]. 振动与冲击, 2013, 32(6): 132–136, 148 doi: 10.3969/j.issn.1000-3835.2013.06.025TANG T, ZHU X, HOU H L, et al. Shock loading induced by high speed fragment in cabin near shipboard [J]. Journal of Vibration and Shock, 2013, 32(6): 132–136, 148 doi: 10.3969/j.issn.1000-3835.2013.06.025 [7] 孔祥韶, 吴卫国, 刘芳, 等. 舰船舷侧防护液舱对爆炸破片的防御作用研究 [J]. 船舶力学, 2014, 18(8): 996–1004 doi: 10.3969/j.issn.1007-7294.2014.08.015KONG X S, WU W G, LIU F, et al. Research on protective effect of guarding fluid cabin under attacking by explosion fragments [J]. Journal of Ship Mechanics, 2014, 18(8): 996–1004 doi: 10.3969/j.issn.1007-7294.2014.08.015 [8] 沈晓乐, 朱锡, 侯海量, 等. 高速破片入水镦粗变形及侵彻特性有限元分析 [J]. 舰船科学技术, 2012, 34(7): 25–29 doi: 10.3404/j.issn.1672-7649.2012.07.005SHEN X L, ZHU X, HOU H L, et al. Finite element analysis of underwater high velocity fragment mushrooming and penetration properties [J]. Ship Science and Technology, 2012, 34(7): 25–29 doi: 10.3404/j.issn.1672-7649.2012.07.005 [9] 张振华, 朱锡, 黄玉盈, 等. 水面舰艇舷侧防雷舱结构水下抗爆防护机理研究 [J]. 船舶力学, 2006, 10(1): 113–119 doi: 10.3969/j.issn.1007-7294.2006.01.015ZHANG Z H, ZHU X, HUANG Y Y, et al. Theoretical research on the defendence of cabin near shipboard of surface warship subjected to underwater contact explosion [J]. Journal of Ship Mechanics, 2006, 10(1): 113–119 doi: 10.3969/j.issn.1007-7294.2006.01.015 [10] 沈晓乐, 朱锡, 侯海量, 等. 高速破片侵彻防护液舱试验研究 [J]. 中国舰船研究, 2011, 6(3): 12–15 doi: 10.3969/j.issn.1673-3185.2011.03.003SHEN X L, ZHU X, HOU H L, et al. Experimental study on penetration properties of high velocity fragment into safety liquid cabin [J]. Chinese Journal of Ship Research, 2011, 6(3): 12–15 doi: 10.3969/j.issn.1673-3185.2011.03.003 [11] 李典, 朱锡, 侯海量, 等. 高速杆式弹体侵彻下蓄液结构载荷特性的有限元分析 [J]. 爆炸与冲击, 2016, 36(1): 1–8LI D, ZHU X, HOU H L, et al. Finite element analysis of load characteristic of liquid-filled structure subjected to high velocity long-rod projectile penetration [J]. Explosion and Shock Waves, 2016, 36(1): 1–8 [12] 张元豪, 陈长海, 侯海量, 等. 高速破片侵彻防护液舱后的水中运动特性试验研究 [J]. 兵器材料科学与工程, 2016, 39(5): 44–48ZHANG Y H, CHEN C H, HOU H L, et al. Experimental study on kinetic characteristic of high velocity fragments in water after penetration of protecting liquid cabin [J]. Ordnance Material Science and Engineering, 2016, 39(5): 44–48