“反尖端”界面不稳定性数值计算分析

王涛 汪兵 林健宇 柏劲松 李平 钟敏 陶钢

王涛, 汪兵, 林健宇, 柏劲松, 李平, 钟敏, 陶钢. “反尖端”界面不稳定性数值计算分析[J]. 高压物理学报, 2019, 33(1): 012302. doi: 10.11858/gywlxb.20180575
引用本文: 王涛, 汪兵, 林健宇, 柏劲松, 李平, 钟敏, 陶钢. “反尖端”界面不稳定性数值计算分析[J]. 高压物理学报, 2019, 33(1): 012302. doi: 10.11858/gywlxb.20180575
WANG Tao, WANG Bing, LIN Jianyu, BAI Jingsong, LI Ping, ZHONG Min, TAO Gang. Computational Analysis of RM Instability with Inverse Chevron Interface[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 012302. doi: 10.11858/gywlxb.20180575
Citation: WANG Tao, WANG Bing, LIN Jianyu, BAI Jingsong, LI Ping, ZHONG Min, TAO Gang. Computational Analysis of RM Instability with Inverse Chevron Interface[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 012302. doi: 10.11858/gywlxb.20180575

“反尖端”界面不稳定性数值计算分析

doi: 10.11858/gywlxb.20180575
基金项目: 科学挑战计划(TZ2016001);国家自然科学基金(11532012,11702272)
详细信息
    作者简介:

    王 涛(1979-),男,硕士,副研究员,主要从事计算力学研究. E-mail:wtao_mg@163.com

    通讯作者:

    柏劲松(1968-),男,博士,研究员,主要从事计算力学研究. E-mail: bjsong@foxmail.com

  • 中图分类号: O354; O357

Computational Analysis of RM Instability with Inverse Chevron Interface

  • 摘要: 利用可压缩多介质黏性流动和湍流大涡模拟代码(MVFT),在超算平台上对“反尖端”界面不稳定性及其诱发的湍流混合问题进行了大规模三维数值模拟分析。数值模拟结果清晰地显示了冲击波加载界面后分解产生的冲击波、稀疏波、压缩波及其在SF6气体中的运动和相互作用,以及波多次加载界面的复杂过程,波和界面的每一次作用都会加速湍流混合区的发展和物质混合。“反尖端”界面受冲击波加载后发生反相而形成典型的大尺度壁面气泡和中心轴尖钉结构,该大尺度结构基本确定了湍流混合区的平均几何特征和包络范围而不依赖计算网格。高分辨率的计算网格下,捕捉到了更精细的小尺度湍涡结构和更强的湍流脉动,显示了湍流混合区所具有的复杂结构和特征。

     

  • 图  计算模型和“反尖端”界面

    Figure  1.  Computational model and inverse chevron interface

    图  用流场密度显示的一维近似波谱图

    Figure  2.  1D approximate wave visualized using flow filed density

    图  “反尖端”界面演化的实验图像(左列)和以密度显示的数值模拟结果(三维计算的展向平均, 右3列从左至右计算网格尺寸依次为1.00、0.50和0.25 mm)比较

    Figure  3.  Comparison of experimental (left column) and simulated density images (three right columns on different grid resolutions) of inverse chevron interface

    图  2.0 ms时刻不同网格分辨率下以SF6体积分数显示的湍流混合区三维图像

    Figure  4.  3D images of turbulent mixing zone visualized using SF6 volume fraction on different grid resolutions at 2.0 ms

    图  3.0 ms时刻不同网格分辨率下以SF6体积分数显示的的湍流混合区三维图像

    Figure  5.  3D images of turbulent mixing zone visualized using SF6 volume fraction on different grid resolutions at 3.0 ms

    图  4.0 ms时刻不同网格分辨率下以SF6体积分数显示的的湍流混合区三维图像

    Figure  6.  3D images of turbulent mixing zone visualized using SF6 volume fraction on different grid resolutions at 4.0 ms

    图  大尺度壁面气泡和中心尖钉的位置D随时间变化曲线

    Figure  7.  Positions of wall-bubble and center-spike with large scale in time

    图  不同时刻中心轴上的流场密度分布

    Figure  8.  Flow density distributions along the centerline at different times

    图  不同时刻中心轴上SF6体积分数分布

    Figure  9.  SF6volume fraction distributions along the centerline at different times

    图  10  不同时刻无量纲化湍动能沿冲击波运动方向的分布

    Figure  10.  Dimensionless turbulent kinetic energy distributions along motion direction of shock wave at different times

    图  11  不同时刻无量纲化拟涡能沿冲击波运动方向的分布

    Figure  11.  Dimensionless enstrophy distributions along motion direction of shock wave at different times

    表  1  空气和SF6的初始参数

    Table  1.   Initial properties of air and SF6

    Gas ρ/(kg·m–3 p/MPa γ μl/(Pa·s) Diffusion coefficient/(m2·s–1
    SF6 5.97 0.1 1.09 1.474 6×10–5 0.97×10-5
    Air 1.18 0.1 1.40 1.852 6×10–5 2.04×10–5
    下载: 导出CSV
  • [1] RICHTMYER R D. Taylor instability in a shock acceleration of compressible of fluids [J]. Communications on Pure and Applied Mathematics, 1960, 13: 297–319. doi: 10.1002/(ISSN)1097-0312
    [2] MESHKOV E E. Instability of the interface of two gases accelerated by a shock wave [J]. Fluid Dynamics, 1969, 4(5): 101–104.
    [3] CHANDRASEKHAR S. Hydrodynamic and hydromagnetic stability [M]. London: Oxford University, 1961.
    [4] 王涛, 柏劲松, 李平, 等. 再冲击载荷作用下流动混合的数值模拟 [J]. 爆炸与冲击, 2009, 29(3): 243–248 doi: 10.3321/j.issn:1001-1455.2009.03.004

    WANG T, BAI J S, LI P, et al. Numerical simulation of flow mixing impacted by reshock [J]. Explosion and Shock Waves, 2009, 29(3): 243–248 doi: 10.3321/j.issn:1001-1455.2009.03.004
    [5] WANG T, BAI J S, LI P, et al. The numerical study of shock-induced hydrodynamic instability and mixing [J]. Chinese Physics B, 2009, 18(3): 1127–1135. doi: 10.1088/1674-1056/18/3/048
    [6] BAI J S, LIU J H, WANG T, et al. Investigation of the Richtmyer-Meshkov instability with double perturbation interface in nonuniform flows [J]. Physical Review E, 2010, 81(2): 056302.
    [7] BAI J S, WANG B, WANG T, et al. Numerical simulation of the Richtmyer-Meshkov instability in initially nonuniform flows and mixing with reshock [J]. Physical Review E, 2012, 86(6): 066319. doi: 10.1103/PhysRevE.86.066319
    [8] XIAO J X, BAI J S, WANG T. Numerical study of initial perturbation effects on Richtmyer-Meshkov instability in nonuniform flows [J]. Physical Review E, 2016, 94(1): 013112. doi: 10.1103/PhysRevE.94.013112
    [9] LEINOV E, MALAMUD G, ELBAZ Y, et al. Experimental and numerical investigation of the Richtmyer–Meshkov instability under re-shock conditions [J]. Journal of Fluid Mechanics, 2009, 626: 449–475. doi: 10.1017/S0022112009005904
    [10] THORNBER B, DRIKAKIS D, YOUNGS D L, et al. The influence of initial conditions on turbulent mixing due to Richtmyer–Meshkov instability [J]. Journal of Fluid Mechanics, 2010, 654: 99–139. doi: 10.1017/S0022112010000492
    [11] LATINI M, SCHILLING O, DON W S. Richtmyer-Meshkov instability-induced mixing: initial conditions modeling, three-dimensional simulation and comparisons to experiment: UCRL-CONF-227160 [R]. Livermore: Lawrence Livermore National Laboratory, 2007.
    [12] SCHILLING O, LATINI M. High-order WENO simulations of three-dimensional reshocked Richtmyer–Meshkov instability to late times: dynamics, dependence on initial conditions, and comparisons to experimental data [J]. Acta Mathematica Scientia, 2010, 30(2): 595–620. doi: 10.1016/S0252-9602(10)60064-1
    [13] MALAMUD G, LEINOV E, SADOT O, et al. Reshocked Richtmyer-Meshkov instability: numerical study and modeling of random multi-mode experiments [J]. Physics of Fluids, 2014, 26(8): 084107. doi: 10.1063/1.4893678
    [14] MIKAELIAN K O. Testing an analytic model for Richtmyer–Meshkov turbulent mixing widths [J]. Shock Waves, 2015, 25(1): 35–45. doi: 10.1007/s00193-014-0537-0
    [15] SI T, LONG T, ZHAI Z, et al. Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder [J]. Journal of Fluid Mechanics, 2015, 784: 225–251. doi: 10.1017/jfm.2015.581
    [16] LIANG Y, DING J, ZHAI Z, et al. Interaction of cylindrically converging diffracted shock with uniform interface [J]. Physics of Fluids, 2017, 29(8): 086101. doi: 10.1063/1.4997071
    [17] HILL D J, PANTANO C, PULLIN D I. Large-eddy simulation and multiscale modelling of a Richtmyer–Meshkov instability with reshock [J]. Journal of Fluid Mechanics, 2006, 557: 29–61. doi: 10.1017/S0022112006009475
    [18] GRINSTEIN F F, GOWARDHAN A A, WACHTOR A J. Simulations of Richtmyer–Meshkov instabilities in planar shock-tube experiments [J]. Physics of Fluids, 2011, 23(3): 034106. doi: 10.1063/1.3555635
    [19] WEBER C, HAEHN N, OAKLEY J, et al. Turbulent mixing measurements in the Richtmyer-Meshkov instability [J]. Physics of Fluids, 2012, 24(7): 074105. doi: 10.1063/1.4733447
    [20] TRITSCHLER V K, OLSON B J, LELE S K, et al. On the Richtmyer–Meshkov instability evolving from a deterministic multimode planar interface [J]. Journal of Fluid Mechanics, 2014, 755: 429–462. doi: 10.1017/jfm.2014.436
    [21] WANG T, BAI J S, LI P, et al. Large-eddy simulations of the multi-mode Richtmyer–Meshkov instability and turbulent mixing under reshock [J]. High Energy Density Physics, 2016, 19: 65–75. doi: 10.1016/j.hedp.2016.03.001
    [22] WANG T, TAO G, BAI J, et al. Dynamical behavior of the Richtmyer–Meshkov instability-induced turbulent mixing under multiple shock interactions [J]. Canadian Journal of Physics, 2017, 95(8): 671–681. doi: 10.1139/cjp-2016-0633
    [23] MOHAGHAR M, CARTER J, MUSCI B, et al. Evaluation of turbulent mixing transition in a shock-driven variable-density flow [J]. Journal of Fluid Mechanics, 2017, 831: 779–825. doi: 10.1017/jfm.2017.664
    [24] BANERJEE A, GORE R A, ANDREWS M J. Development and validation of a turbulent-mix model for variable-density and compressible flows [J]. Physical Review E, 2010, 82(4): 046309. doi: 10.1103/PhysRevE.82.046309
    [25] CABOT W H, COOK A W. Reynolds number effects on Rayleigh–Taylor instability with possible implications for type-Ia supernovae [J]. Nature Physics, 2006, 2(8): 562–568. doi: 10.1038/nphys361
    [26] VREMAN A W. An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications [J]. Physics of Fluids, 2004, 16(10): 3670–3681. doi: 10.1063/1.1785131
    [27] HOLDER D A, BARTON C J. Shock tube Richtmyer-Meshkov experiments: inverse chevron and half height [C]// Proceedings of the 9th International Workshop on Physics of Compressible Turbulent Mixing. Cambridge, UK, 2004.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  6700
  • HTML全文浏览量:  3207
  • PDF下载量:  23
出版历程
  • 收稿日期:  2018-06-05
  • 修回日期:  2018-06-28

目录

    /

    返回文章
    返回