Numerical Simulation of Interference Effect of Multi Sandwich Structure Reaction Armor to Jet
-
摘要: 为了进一步提升反应装甲的防护能力,设计了一种新型多三明治结构反应装甲,并得出5种不同尺寸的反应装甲。第1种尺寸的反应装甲在传统反应装甲的中间部位加一层钢板,第2至第5种尺寸的反应装甲在第1种尺寸的基础上进行设计,但反应装甲总厚度均与传统反应装甲相同。采用ANSYS-LSDYNA软件进行数值模拟,与传统结构反应装甲就射流断裂时刻、射流刚接触后效靶板时刻、射流失去干扰时刻以及最终对后效靶板的侵彻结果进行了对比。为了更加直观地反映新结构反应装甲对射流干扰的强度,将5种反应装甲与传统双层反应装甲进行侵彻数据对比。模拟结果表明:A型反应装甲头部射流偏转距离最长;新结构反应装甲对射流的干扰时间均比传统反应装甲长,其中E型反应装甲对射流的干扰时间最长,A型反应装甲防护效果最好;在与传统反应装甲厚度相同的情况下,D型反应装甲的防护效果最好。选用A型、D型和F型反应装甲来做验证实验,结果表明数值模拟结果可靠。Abstract: To enhance the protective capabilities of reactive armor, five different sizes of reactive armor with multi sandwich structure were designed and obtained.The first size of reactive armor added a layer of steel to the middle of the traditional reactive armor, and the second to fifth sizes of reactive armor were designed based on the first one, but the total thickness of the reactive armor is the same as the traditional reactive armor.ANSYS-LSDYNA software was used for numerical simulation.Comparisons between the new reactive armor and the traditional reactive armor were performed, focusing on the moment of jet break, the moment when the jet just collides with the target, the moment when the jet loses interference, and the penetration result of the target.In order to highlight the strength of the interference capacity of the new structure reactive armor in a more direct manner, the six reactive armors were compared in terms of the penetration data with two-layer reactive armor.The simulation results show that the A-type reactive armor of head jet has the longest deflection distance; the interference time of the new structure reactive armor to the jet is longer than that of the traditional reactive armor, and the interference time of the E-type reactive armor to the jet is the longest; A-type reactive armor has the best protection performance; when the reactive armor has the same thickness with the traditional reactive armor, the D-type reactive armor has the best protection effect.The A-type, D-type, and F-type reactive armors were selected for verification experiments.The experimental results show that the numerical simulation results are reliable.
-
表 1 紫铜、603钢材料参数
Table 1. Material parameters of copper and 603 steel
Material ρ/(g·cm-3) E0/GPa μ A/MPa B/MPa C n m Copper 8.96 124 0.34 292 300 0.025 0.310 1.09 603 steel 7.85 210 0.22 362 180 0.087 0.568 1.00 表 2 主装药参数
Table 2. Parameters of main explosive
ρ/(g·cm-3) AJWL/GPa BJWL/GPa R1 R2 ω D/(km·s-1) 1.72 374 3.3 4.5 0.95 0.3 7.89 表 3 夹层装药参数
Table 3. Parameters of confined explosive
ρ0/(g·cm-3) pCJ/GPa I/Ms-1 G1/(fs·Pa-1) G2/(as·Pa-1) D/(km·s-1) λG2, min 1.717 27 44 310 0.4 6.93 0 a b c d z g y 0 0.667 0.667 0.111 2.0 1.0 1.0 表 4 射流对后效靶板侵彻结果数据
Table 4. Penetration data of jet to target
Category of ERA Penetration depth/mm Maximum penetration diameter/mm A 22.0 36.0 B 36.9 23.2 C 31.0 22.4 D 27.8 26.2 E 31.3 28.1 F 45.0 26.0 -
[1] HELD M.Explosive reactive armor: 1581125[P].1974. [2] LI X D, YANG Y S, LV S T.A numerical study on the disturbance of explosive reactive armors to jet penetration[J].Defence Technology, 2014, 10(1):66-75. doi: 10.1016/j.dt.2014.01.006 [3] 武海军, 陈利, 王江波, 等.反应装甲对射流干扰的数值模拟研究[J].北京理工大学学报, 2006, 26(7):565-568. doi: 10.3969/j.issn.1001-0645.2006.07.001WU H J, CHEN L, WANG J B, et al.Numerical simulation on reactive armor disturbing jet[J].Journal of Beijing Institute of Technology, 2006, 26(7):565-568. doi: 10.3969/j.issn.1001-0645.2006.07.001 [4] 周杰, 王凤英, 原诗瑶, 等.楔形装药对射流干扰的数值模拟[J].高压物理学报, 2018, 32(2):135-142. http://www.gywlxb.cn/CN/abstract/abstract2064.shtmlZHOU J, WANG F Y, YUAN S Y, et al.Numerical simulation of interference effect of wedge-shaped charge on jet[J].Chinese Journal of High Pressure Physics, 2018, 32(2):135-142. http://www.gywlxb.cn/CN/abstract/abstract2064.shtml [5] 李如江, 沈兆武.NATO角和飞板速度对平板装药干扰射流频率的影响[J].含能材料, 2008, 16(3):295-297. doi: 10.3969/j.issn.1006-9941.2008.03.014LI R J, SHEN Z W.Effects of NATO angle and plate velocity on disturbance frequency of reactive armor against shaped charge jet[J].Chinese Journal of Energetic Materials, 2008, 16(3):295-297. doi: 10.3969/j.issn.1006-9941.2008.03.014 [6] 曾凡君, 李健, 梁秀清, 等.反应装甲爆轰阶段对射流干扰机理的研究[J].北京理工大学学报:自然科学版, 1994, 14(3):286-291. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400158156ZENG F J, LI J, LIANG X Q, et al.A further study of the disturbance mechanism on jets caused by reactive armors[J].Journal of Beijing Institute of Technology:Natural Science Edition, 1994, 14(3):286-291. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400158156 [7] 甄金朋, 刘天生.平板装药驱动飞板运动规律分析[J].四川兵工学报, 2010, 31(2):17-19. doi: 10.3969/j.issn.1006-0707.2010.02.006ZHEN J P, LIU T S.Analysis of the motion law of shaped charge drive plates[J].Journal of Ordnance Equipment Engineering, 2010, 31(2):17-19. doi: 10.3969/j.issn.1006-0707.2010.02.006 [8] 吴鹏, 李如江, 阮光光, 等.弹着点位置对V形反应装甲干扰射流的影响[J].高压物理学报, 2018, 32(1):157-163. http://www.gywlxb.cn/CN/abstract/abstract2044.shtmlWU P, LI R J, RUAN G G, et al.Effects of impact point position on V-shaped reactive armor disturbing jet[J].Chinese Journal of High Pressure Physics, 2018, 32(1):157-163. http://www.gywlxb.cn/CN/abstract/abstract2044.shtml