Pressure-Induced Electrical Transport Anomaly, Structure Evolution and Vibration Change in Layered Material 1T-TiTe2

GU Kemin YAN Hao KE Feng DENG Wen XU Jianing CHEN Bin

古可民, 晏浩, 柯峰, 邓文, 许家宁, 陈斌. 压力诱导的层状结构二碲化钛电输运性质、结构演变和振动性质的变化[J]. 高压物理学报, 2018, 32(6): 061101. doi: 10.11858/gywlxb.20180568
引用本文: 古可民, 晏浩, 柯峰, 邓文, 许家宁, 陈斌. 压力诱导的层状结构二碲化钛电输运性质、结构演变和振动性质的变化[J]. 高压物理学报, 2018, 32(6): 061101. doi: 10.11858/gywlxb.20180568
GU Kemin, YAN Hao, KE Feng, DENG Wen, XU Jianing, CHEN Bin. Pressure-Induced Electrical Transport Anomaly, Structure Evolution and Vibration Change in Layered Material 1T-TiTe2[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 061101. doi: 10.11858/gywlxb.20180568
Citation: GU Kemin, YAN Hao, KE Feng, DENG Wen, XU Jianing, CHEN Bin. Pressure-Induced Electrical Transport Anomaly, Structure Evolution and Vibration Change in Layered Material 1T-TiTe2[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 061101. doi: 10.11858/gywlxb.20180568

Pressure-Induced Electrical Transport Anomaly, Structure Evolution and Vibration Change in Layered Material 1T-TiTe2

doi: 10.11858/gywlxb.20180568
More Information
    Author Bio:

    GU Kemin(1992-), male, master, major in condensed matter physics. E-mail:Kemin.gu@hpstar.ac.cn

    Corresponding author: CHEN Bin(1950-), male, Ph. D, one thousand talent, expertise in material science. E-mail:binchen@hpstar.ac.cn
  • 摘要: 系统地研究了层状二碲化钛在压力(至43.4 GPa)作用下的电输运、晶格振动和结构性质。室温下样品的电阻率在6、13和22 GPa附近表现出一系列的异常。为更好地研究二碲化钛的电子结构,测试了样品的低温电阻,在约6 GPa处观察到超导转变。综合拉曼光谱和X射线衍射(XRD)实验结果发现:二碲化钛在6 GPa附近可能发生拓扑相变;继续加压至约13 GPa,样品发生从三角晶系到单斜晶系的结构相变,相变到22 GPa附近完全结束。XRD数据与电输运结果相互印证,揭示了样品在压力诱导下的结构演变和电子结构变化。因此,二碲化钛为人们了解过渡金属二硫化物提供了一个全新的视角。

     

  • Figure  1.  (a) XRD pattern of powder TiTe2 collected at ambient condition; (b) Trigonal P3m1 structure of TiTe2(Yellow and blue balls represent Ti and Te atom respectively.)

    Figure  2.  Room-temperature resistivity changes with pressure(The black dots and red circles are compression anddecompression data, respectively. Inset is thesetup of this measurement.)

    Figure  3.  (a) Resistance of TiTe2 between 2-300 K measured at various pressures; (b) Low-temperature regime of the resistivity of TiTe2 under high pressure up to 36.8 GPa

    Figure  4.  (a) Synchrotron XRD patterns of TiTe2 collected at various pressures up to 43.4 GPa; (b) Representative refinement of patterns collected at 1.0 GPa and (c) 22.4 GPa

    Figure  5.  Normalized lattice parameters a/a0, c/c0, V/V0 and c/a ratio of TiTe2 (A minimum ofthe ratio can be seen at around 6 GPa)

    Figure  6.  Room temperature resistivity, structural and superconductivity phase diagram of TiTe2 (The blue andred line represent Run 1 and Run 2 of superconductingphase respectively. The brown line shows the resistivityanomaly and superconductivity emergence at about 6 GPa.)

    Figure  7.  (a) Raman spectra of TiTe2 up to 10 GPa (A new peak emerged at a relatively low external pressure of 0.7 GPa); (b) Raman peaks of TiTe2 (A phonon softening can be seen from 4-10 GPa)

  • [1] ALI M N, XIONG J, FLYNN S, et al. Large, non-saturating magnetoresistance in WTe2[J].Nature, 2014, 514(7521):205-208. doi: 10.1038/nature13763
    [2] CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J].Nature Chemistry, 2013, 5(4):263-275. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6a4873481fef04e0e4592491e9b179ac
    [3] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J].Nature Nanotechnology, 2011, 6(3):147-150. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0220379154/
    [4] CHEN Y, KE F, CI P, et al. Pressurizing field-effect transistors of few-layer MoS2 in a diamond anvil cell[J].Nano Letters, 2017, 17(1):194-199. doi: 10.1021/acs.nanolett.6b03785
    [5] YAN J, KE F, LIU C, et al. Pressure-driven semiconducting-semimetallic transition in SnSe[J].Physical Chemistry Chemical Physics, 2016, 18(6):5012-5018. doi: 10.1039/C5CP07377D
    [6] CLAESSEN R, ANDERSON R O, GWEON G, et al. Complete band-structure determination of the quasi-two-dimensional Fermi-liquid reference compound TiTe2[J].Physical Review B:Condensed Matter, 1996, 54(4):2453-2462. doi: 10.1103/PhysRevB.54.2453
    [7] KHAN J, NOLEN C M, TEWELDEBRHAN D, et al. Anomalous electron transport in back-gated field-effect transistors with TiTe2 semimetal thin-film channels[J].Applied Physics Letters, 2012, 100(4):183-187. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1201.1526
    [8] DE BOER D K G, VAN BRUGGEN C F, BUS G W, et al. Titanium ditelluride:Band structure, photoemission, and electrical and magnetic properties[J].Physical Review B:Condensed Matter, 1984, 29(29):6797-6809. http://adsabs.harvard.edu/abs/1984PhRvB..29.6797D
    [9] ZHANG Q, CHENG Y, SCHWINGENSCHLÖGL U.Series of topological phase transitions in TiTe2, under strain[J].Physical Review B, 2013, 88(15):155317-155322. doi: 10.1103/PhysRevB.88.155317
    [10] FENG K, DONG H, CHEN Y, et al. Decompression-driven superconductivity enhancement in In2Se3[J].Advanced Materials, 2017, 29(4):1701983-1701988. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ca893ae01f07480a5737b1f7aa51a015
    [11] KE F, YANG J, LIU C, et al. High-pressure electrical-transport properties of SnS:experimental and theoretical approaches[J].Journal of Physical Chemistry C, 2013, 117(12):6033-6038. doi: 10.1021/jp3112556
    [12] NAYAK A P, BHATTACHARYYA S, ZHU J, et al. Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide[J].Nature Communications, 2014, 5(6183):536-538. http://www.nature.com/ncomms/2014/140507/ncomms4731/abs/ncomms4731.html
    [13] PAN X C, CHEN X, LIU H, et al. Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride[J].Nature Communications, 2015, 6:7805-7811. doi: 10.1038/ncomms8805
    [14] QI Y, NAUMOV P G, ALI M N, et al. Superconductivity in Weyl semimetal candidate MoTe2[J].Nature Communications, 2016, 7:11038-11043. doi: 10.1038/ncomms11038
    [15] ZHOU Y, WU J, NING W, et al. Pressure-induced superconductivity in a three-dimensional topological material ZrTe5[J].Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(11):2904-2909. doi: 10.1073/pnas.1601262113
    [16] MAO H K, XU J, BELL P M.Calibration of the ruby pressure gauge to 800kbar under quasi-hydrostatic conditions[J].Journal of Geophysical Research Solid Earth, 1986, 91(B5):4673-4676. doi: 10.1029/JB091iB05p04673
    [17] VAN DER PAUW L.A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape[J].Philips Technical Review, 1958, 20(8):220-224.
    [18] CHIJIOKE A D, NELLIS W J, SOLDATOV A, et al. The ruby pressure standard to 150GPa[J].Journal of Applied Physics, 2005, 98(11):114905-114905. doi: 10.1063/1.2135877
    [19] PRESCHER C, PRAKAPENKA V B.A program for reduction of two-dimensional X-ray diffraction data and data exploration[J].High Pressure Research, 2015, 35(3):285-288. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=36647e47e9aa2ebf76d027e9b1d6703f
    [20] ROISNEL T, RODRIQUEZ-CARVAJALL J.WINPLOTR:a windows tool for powder diffraction pattern analysis[J].Materials Science Forum, 2001, 378(1):118-123. http://www.scientific.net/MSF.378-381.118.pdf
    [21] RODRÍGUEZ-CARVAJAL J.Recent advances in magnetic structure determination by neutron powder diffraction[J].Physica B:Condensed Matter, 1993, 192(1/2):55-69. doi: 10.1016-0921-4526(93)90108-I/
    [22] RAJAJI V, DUTTA U, SREEPARVATHY P C, et al. Structural, vibrational, and electrical properties of 1T-TiTe2, under hydrostatic pressure:experiments and theory[J].Physical Review B, 2018, 97(8):085107-085122. doi: 10.1103/PhysRevB.97.085107
    [23] YOMO R, YAMAYA K.Pressure effect on competition between charge density wave and superconductivity in ZrTe3:appearance of pressure-induced reentrant superconductivity[J].Physical Review B, 2005, 71(13):2508-2513. http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRBMDO000071000013132508000001&idtype=cvips&gifs=Yes
    [24] XI X, MA C, LIU Z, et al. Signatures of a pressure-induced topological quantum phase transition in BiTel[J].Physical Review Letters, 2013, 111(15):155701-155708. doi: 10.1103/PhysRevLett.111.155701
    [25] OHMURA A, HIGUCHI Y, OCHIAI T, et al. Pressure-induced topological phase transition in the polar semiconductor BiTeBr[J].Physical Review B, 2017, 95(12):12527-12532. doi: 10.1103/PhysRevB.95.125203
    [26] HANGYO M, NAKASHIMA S I, MITSUISHI A.Raman spectroscopic studies of MX2-type layered compounds[J].Ferroelectrics, 1983, 52(1):151-159. doi: 10.1080/00150198308208248
    [27] BARDEEN J, COOPER L N, SCHRIEFFER J R.Microscopic theory of superconductivity[J].Journal of Superconductivity, 1957, 106(106):162-164. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0902.4314
    [28] MCMILLAN W L.Transition temperature of strong-coupled superconductors[J].Physical Review, 1968, 167(2):331-344. doi: 10.1103/PhysRev.167.331
  • 加载中
图(7)
计量
  • 文章访问数:  8275
  • HTML全文浏览量:  3136
  • PDF下载量:  51
出版历程
  • 收稿日期:  2018-05-21
  • 修回日期:  2018-06-04

目录

    /

    返回文章
    返回