Experimental Analysis of Fatigue Performance in Transmission Lines at Different Annealing Temperatures
-
摘要: 输电线路是输电网络的重要组成部分。然而,电网输电线路山火频发,严重威胁输电线路的安全运行,因此研究输电导线在山火过后的力学性能特别是疲劳寿命尤为重要。考虑到导线在微风振动中的疲劳破坏主要由其拉伸力的变化引起,为确定山火过后输电导线的力学性能特别是疲劳性能的变化情况,利用恒温管式电阻炉模拟不同的架空输电导线(钢芯铝绞线)受到不同温度的山火烧烤,然后对冷却后的单丝导线进行疲劳拉伸试验,得到疲劳拉伸破坏次数随退火温度变化的规律,并与新导线和真实山火后的导线进行对比。试验结果表明:导线的疲劳极限随着退火温度的增加而减小;退火温度大于250 ℃时,导线的拉伸循环次数急剧下降;退火温度大于350 ℃时,拉伸循环次数趋于稳定。研究结果可为输电线路发生山火情况下的安全运行提供参考。Abstract: Transmission line is the important equipment to transport electrical energy through power grid. Mountain fires are frequent events in recent years, which severely damages the safe operation of the high voltage transmission lines. Therefore, it is very important to study the mechanical characteristics of transmission lines after mountain fire. Based on the simulation test of transmission lines in the mountain fire, we studied the effects of the annealing temperature on the fatigue of overhead transmission lines. The fatigue failure of the transmission lines in aeolian vibration was reflected in the continuous axial fatigue tensile state. First, we conducted an experiment by the thermostatic tube X resistance furnaces to stimulate different transmission lines (JL/G1A-400/35, JL/G1A-300/25, JL/G1A-240/30, JL/G1A-300/40) burned in the mountain fire at different temperatures. Then, we carried out a fatigue tensile test on the single transmission line, and found that the frequency of fatigue tensile failure was correlated with temperature. Furthermore, we compared the data between new transmission lines and those burned in an actual mountain fire. Finally, we proposed reference for the protection of transmission lines in a mountain fire and prevention against being burned. The results showed that the fatigue limit of wires was reduced with the rise of the temperature. When the temperature was between 250 ℃ and 300 ℃, the tensile cycle times deceases sharply; when the temperature is above 300 ℃, it tended to be stable.
-
Key words:
- overhead line conductors /
- fatigue /
- annealing temperature /
- mountain fire
-
表 1 4种型号钢芯铝绞线参数
Table 1. Parameters of four types of ACSR (aluminium conductor steel reinforced)
Type of wire Number of
aluminum wireNumber of
steel wireAluminum wire’s
diameter/mmSteel wire’s
diameter/mmRated tensile
force/kNJL/G1A-400/35 48 7 3.22 2.50 103.67 JL/G1A-300/25 48 7 2.85 2.22 83.76 JL/G1A-240/30 24 7 3.60 2.40 75.19 JL/G1A-300/40 24 7 3.99 2.66 92.36 表 2 JL/G1A-400/35导线在不同温度下的疲劳拉伸次数
Table 2. Fatigue cycle number of wire JL/G1A-400/35 at different temperatures
Type of wire T/℃ n Outer layer Middle level Inner layer Steel core Wire after annealing 150 120 000 120 000 120 000 9 821 200 113 411 120 000 120 000 9 885 250 120 000 120 000 120 000 5 065 300 84 491 94 529 97 456 5 537 350 9 885 7 521 4 028 4 424 400 4 383 5 888 6 160 2 858 450 3 736 3 928 3 722 1 495 500 2 504 1 144 1 041 956 New wires 81 071 120 000 79 784 6 054 Wire after mountain fire 91 824 120 000 71 748 14 549 -
[1] MCCONNELL K G, ZEMKE W P. A model to predict the coupled axial torsion properties of ACSR electrical conductors [J]. Experimental Mechanics, 1982, 22(7): 237–244. [2] 狐冠宇. 节能导线在输电工程中的应用研究[D]. 北京: 华北电力大学, 2015. [3] 刘佳琼, 唐震, 郑清丽, 等. 大型山火发生时输电导线温度及力学参数的计算分析 [J]. 太原理工大学学报, 2017, 48(5): 854–860.LIU J Q, TANG Z, ZHENG Q L, et al. Calculation and analysis of temperature and mechanical parameters of transmission lines when large wildfires take place [J]. Journal of Taiyuan University of Technology, 2017, 48(5): 854–860. [4] FLEMING J F, ATKINS R S, MOZER J D. A program for longitudinal load analysis of electric transmission lines [J]. Computers & Structures, 1978, 9(3): 237–253. [5] JOYCE V, ABELL J S, GREENOUGH R D, et al. Magnetisation and magnetostriction in rare earth-iron alloys [J]. Journal of Applied Physics, 1988, 64(10): 5414–5416. doi: 10.1063/1.342387 [6] MORRIS D G, HARRIES D R. Recovery of a creep-deformed Type 316 stainless steel [J]. Journal of Materials Science, 1979, 14(11): 2625–2636. doi: 10.1007/BF00610631 [7] 关志成, 张福增, 王国利, 等. 我国特高压的特有技术问题 [J]. 电力设备, 2006, 7(1): 1–4.GUAN Z C, ZHANG F Z, WANG G L, et al. Peculiar technology problems of UHV in China [J]. Electrical Equipment, 2006, 7(1): 1–4. [8] FONSECA J R, TAN A L, SILVA R P, et al. Effects of agricultural fires on the performance of overhead transmission lines [J]. IEEE Transactions on Power Delivery, 1990, 5(2): 687–694. doi: 10.1109/61.53071 [9] 张洁. 输电线路缺陷在线监控系统设计与实现[D]. 成都: 电子科技大学,2015. [10] 窦飞, 乔黎伟. 架空线路输电能力计算 [J]. 电力建设, 2010, 31(12): 23–25. doi: 10.3969/j.issn.1000-7229.2010.12.006DOU F, QIAO L W. Transmission capability calculation of overhead transmission lines [J]. Electric Power Construction, 2010, 31(12): 23–25. doi: 10.3969/j.issn.1000-7229.2010.12.006 [11] 上海电缆研究所. 圆线同心绞架空导线: GB/T 1179-2008 [S]. 北京: 中华人民共和国国家质量监督检验检疫总局, 2008. [12] 曹建安, 文雨松. 锈蚀钢筋的疲劳试验研究 [J]. 铁道科学与工程学报, 1998(4): 15–18.CAO J A, WEN Y S. Fatigue experimental study on corrosion reinforcement [J]. Journal of Changsha Railway University, 1998(4): 15–18. [13] 刘佳琼, 李建宾, 秦浩, 等. 山火过后JL/G1A-400/35高压线的力学性能测试研究[C]//力学与工程应用. 2016. [14] ZHANG P, YAN H, XU P, et al. Influence of different annealing temperatures and cooling rates on amorphous and crystalline composite coating [J]. Surface & Coatings Technology, 2012, 206(23): 4981–4987. [15] LEE D D, SHIM J M, KIM Y D, et al. Mechanical and electrical characteristics analysis of the ACSR affected by high temperature [J]. Rare Metals, 2011, 30(1): 311–315. [16] WANG T, TANG Z, WANG X, et al. Experimental research on mechanical properties of high voltage transmission lines after the simulated wildfires [C]//2nd International Conference on Mechatronics and Mechanical Engineering. 2015, 34: 06003.