Preparation of Cobalt-Doped Magnesium Oxide Pressure-Transmitting Medium with Solid Reaction Process
-
摘要: 以氧化镁(MgO)和氧化钴(CoO)为初始材料,利用固相反应方法,经8 h的混料、200 MPa的预压以及在空气氛围下1 200℃的烧结等步骤,成功制备出钴的摩尔分数为9%的氧化镁传压介质(MgO+9% CoO)。采用X射线粉末衍射仪、扫描电子显微镜以及热重分析仪对样品进行表征,结果表明:在烧结过程中混合粉料之间发生了反应,金属离子相互交换,钴离子取代MgO晶格中的部分镁离子,从而形成MgO-CoO固溶体。与目前国产MgO传压介质(MgO+10% Na4SiO4(质量分数))相比,实验制备的钴掺杂MgO传压介质不含杂质,高温高压下更稳定,并且温度发生效率更高。
-
关键词:
- 固相反应 /
- 高温高压 /
- MgO-CoO固溶体 /
- 传压介质 /
- 温度发生效率
Abstract: In this study, magnesium oxide (MgO) doped by cobalt (Co) was prepared as pressure-transmitting medium, by solid reaction process.The starting material is a pre-compressed mixture of MgO and cobalt oxide (CoO), which was mixed for 8 h and compressed at 200 MPa, and then treated at 1 200℃.The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis.The results demonstrate that during the sintering process, the reaction between MgO and CoO was completed and the exchange of metal ions between MgO and CoO leads to a single solid solution phase.Compared to the domestic products (MgO+10wt% Na4SiO4), there is no impurity found in Co-doped MgO, which is more stable than the domestic products under high pressure and high-temperature.In addition, the temperature-generation efficiency of the cell assembly with MgO+9mol% CoO as pressure-transmitting medium is also higher than that of the domestic products. -
图 2 混合粉料经不同温度处理后(a)以及MgO+9%CoO和MgO+10%Na4SiO4在12 GPa/2 000 ℃、12 GPa/1 800 ℃条件下处理前后(b)的XRD谱(图 2(b)中的温度为腔体中心温度)
Figure 2. XRD patterns of powder mixture treated at different temperatures (a) and MgO+9%CoO and MgO+10%Na4SiO4 before and after being treated at 12 GPa/2 000 ℃ and 12 GPa/1 800 ℃ (b) (The temperature in Fig. 2(b) represents the central temperature of the cell)
表 1 块体样品的压制及烧结情况
Table 1. Experimental details of pressing and sintering of bulk samples
No. Load/
MPaDimension/
(mm×mm×mm)Cracking Density/
(g·cm-3)1 100 39×39×25 No 2.3 2 160 39×39×23 No 2.3 3 160 39×39×23 No 2.3 4 160 39×39×23 No 2.3 5 160 39×39×23 No 2.3 6 240 39×39×24 No 2.4 7 240 39×39×23 No 2.4 8 240 39×39×23 No 2.4 9 240 39×39×23 No 2.4 -
[1] SHATSKIY A, KATSURA T, LITASOV K D, et al.High pressure generation using scaled-up Kawai-cell[J].Physics of the Earth and Planetary Interiors, 2011, 189(1/2):92-108. [2] SHATSKIY A, LITASOV K D, TERASAKI H, et al.Performance of semi-sintered ceramics as pressure-transmitting media up to 30 GPa[J].High Pressure Research, 2010, 30(3):443-450. doi: 10.1080/08957959.2010.515079 [3] KAWAZOE T, NISHIYAMA N, NISHIHARA Y, et al.Pressure generation to 25 GPa using a cubic anvil apparatus with a multi-anvil 6-6 assembly[J].High Pressure Research, 2010, 30(1):167-174. doi: 10.1080/08957950903503912 [4] LIEBERMANN R C, WANG Y.Characterization of sample environment in a uniaxial split-sphere apparatus[M]//High-Pressure Research:Application to Earth and Planetary Sciences.Tokyo:Terra Scientific Publishing Company, 1992:19-31. [5] ONODERA A, SUITO K, KAWAI N.Semisintered oxides for pressure-transmitting media[J].Journal of Applied Physics, 1980, 51(1):315-318. doi: 10.1063/1.327374 [6] KAWAI N, SAKAMOTO H, NOTSU Y, et al.Pressure generation using new transmitting media[J].Proceedings of the Japan Academy, 1975, 51(8):623-626. http://ww1.microchip.com/downloads/en/AppNotes/00713a.pdf [7] LEES J.Pressure generation in the tetrahedral anvil apparatus[J].Journal of Scientific Instruments, 1965, 42(10):771. doi: 10.1088/0950-7671/42/10/122 [8] ASHCROFT K, GOODMAN C H L, LEES J.Improved test cell material for the tetrahedral anvil apparatus[J].Nature, 1965, 205(4972):685-686. doi: 10.1038/205685a0 [9] ZHA C S, MAO H, HEMLEY R J.Elasticity of MgO and a primary pressure scale to 55 GPa[J].Proceedings of the National Academy of Sciences, 2000, 97(25):13494-13499. doi: 10.1073/pnas.240466697 [10] FEI Y.Effects of temperature and composition on the bulk modulus of (Mg, Fe)O[J].American Mineralogist, 1999, 84(3):272-276. doi: 10.2138/am-1999-0308 [11] DUFFY T S, HEMLEY R J, MAO H.Equation of state and shear strength at multimegabar pressures:magnesium oxide to 227 GPa[J].Physical Review Letters, 1995, 74(8):1371-1374. doi: 10.1103/PhysRevLett.74.1371 [12] FEI Y, MAO H K, MYSEN B O.Experimental determination of element partitioning and calculation of phase relations in the MgO-FeO-SiO2 system at high pressure and high temperature[J].Journal of Geophysical Research:Solid Earth, 1991, 96(B2):2157-2169. doi: 10.1029/90JB02164 [13] MAO H K, BELL P M.Equations of state of MgO and ε Fe under static pressure conditions[J].Journal of Geophysical Research:Solid Earth, 1979, 84(B9):4533-4536. doi: 10.1029/JB084iB09p04533 [14] 王海阔, 贺端威, 许超, 等.复合型多晶金刚石末级压砧的制备并标定六面顶压机6-8型压腔压力至35 GPa[J].物理学报, 2013, 62(18):87-93. http://d.old.wanfangdata.com.cn/Periodical/wlxb201318013WANG H K, HE D W, XU C, et al.Calibration of pressure to 35 GPa for the cubic press using the diamond-cemented carbide compound anvil[J].Acta Physica Sinica, 2013, 62(18):87-93. http://d.old.wanfangdata.com.cn/Periodical/wlxb201318013 [15] 王文丹, 贺端威, 王海阔, 等.二级6-8型大腔体装置的高压发生效率机理研究[J].物理学报, 2010, 59(5):3107-3115. doi: 10.7498/aps.59.3107WANG W D, HE D W, WANG H K, et al.Reaserch on pressure generation efficiency of 6-8 type multianvil high pressure apparatus[J].Acta Physica Sinica, 2010, 59(5):3107-3115. doi: 10.7498/aps.59.3107 [16] 王福龙, 贺端威, 房雷鸣, 等.基于铰链式六面顶压机的二级6-8型大腔体静高压装置[J].物理学报, 2008, 57(9):5429-5434. doi: 10.7498/aps.57.5429WANG F L, HE D W, FANG L M, et al.Design and assembly of split-sphere high pressure apparatus based on the hinge-type cubic-anvil press[J].Acta Physica Sinica, 2008, 57(9):5429-5434. doi: 10.7498/aps.57.5429 [17] DING W, HAN J, HU Q, et al.Stress control of heterogeneous nanocrystalline diamond sphere through pressure-temperature tuning[J].Applied Physics Letters, 2017, 110(12):121908. doi: 10.1063/1.4979006 [18] LIU T, KOU Z, LU J, et al.Preparation of superhard cubic boron nitride sintered from commercially available submicron powders[J].Journal of Applied Physics, 2017, 121(12):125902. doi: 10.1063/1.4979312 [19] LU J, KOU Z, LIU T, et al.Submicron binderless polycrystalline diamond sintering under ultra-high pressure[J].Diamond and Related Materials, 2017, 77:41-45. doi: 10.1016/j.diamond.2017.05.011 [20] KRACEK F C.The system sodium oxide-silica[J].The Journal of Physical Chemistry, 1930, 34(7):1583-1598. doi: 10.1021/j150313a018 [21] YAZHENSKIKH E, HACK K, MVLLER M.Critical thermodynamic evaluation of oxide systems relevant to fuel ashes and slags.Part 1:alkali oxide-silica systems[J].Calphad, 2006, 30(3):270-276. doi: 10.1016/j.calphad.2006.03.003 [22] RONCHI C, SHEINDLIN M.Melting point of MgO[J].Journal of Applied Physics, 2001, 90(7):3325-3331. doi: 10.1063/1.1398069 [23] ULLA M A, SPRETZ R, LOMBARDO E, et al.Catalytic combustion of methane on Co/MgO:characterisation of active cobalt sites[J].Applied Catalysis B:Environmental, 2001, 29(3):217-229. doi: 10.1016/S0926-3373(00)00204-6 [24] GIAUQUE W F.An example of the difficulty in obtaining equilibrium corresponding to a macrocrystalline non-volatile phase:the reaction Mg(OH)2⇄MgO+H2O (g)[J].Journal of the American Chemical Society, 1949, 71(9):3192-3194. doi: 10.1021/ja01177a071