Numerical Simulation on Fluid Causing Fatigue of Industrial Pipeline System
-
摘要: 鉴于目前对整个管道系统的疲劳分析和相应数值模拟比较缺乏,基于ANSYS软件,利用Workbench和nCode DesignLife完成了管道系统从建模到流固耦合再到疲劳分析的完整模拟计算过程,得到了一般高压工业输水管道系统在正常流速及管内高压工况下的模拟计算结果,探究了入口速度和随机激振力作用下管道系统和各组件的疲劳响应。结果表明:对于实际运用的工业高压管道,需要对各部分管内流速进行监控,保证其处于合理可控范围;管道系统内的连接部是发生疲劳失效的重点区域,并且多发生于相贯线处;管道系统有助于增加各法兰管件在极限状态下的疲劳寿命。研究结果可为高压工业管道系统的设计和疲劳失效防护提供指导。Abstract: The fatigue analysis for a whole pipeline system is rather rare to date, while in this paper, we accomplished an integrated computational fatigue analysis of the pipeline system based on model constructing and fluid-solid coupling by using Workbench and nCode DesignLife method.And the high pressure industrial water pipeline is studied under normal interior flow velocity and high working pressure conditions respectively.The fatigue response of the system and individual part is affected by various inlet velocities and random excitation forces.The results indicate that the interior flow velocity of each part in industrial high-pressure pipeline should be monitored for the system health.The fatigue failures generally occur on the connecting parts, especially at the interior intersecting line segments.Piping system can extend the fatigue life of flanged pipe at extreme states.This work provides a significant reference for the design of the high pressure industrial piping system in preventing the fatigue failure.
-
Key words:
- fluid-solid coupling /
- pipeline system /
- fatigue analysis /
- excitation force
-
表 1 管道系统内流体对结构的映射力
Table 1. Mapping force of fluid in pipeline system to structure
Component v0/(m·s-1) Mapping force/N x y z Elbow A 3 1.86 124.00 -147.94 5 282.56 39.96 -332.05 7 561.72 142.27 -707.51 10 5 677.60 -2 269.10 -797.02 Elbow B 3 -0.32 -44.00 2.26 5 865.42 -1 068.40 0.24 7 1 745.20 -2 095.90 -9.68 10 18 628.00 -18 369.00 580.01 Tee-support 3 136.32 -0.23 -3.15 5 682.44 0.04 -3.56 7 1 093.30 -1.14 -0.15 10 2 715.60 -6.83 -32.04 Tee-out 3 472.57 -0.01 343.97 5 1 707.60 -0.65 1 092.30 7 3 031.30 -0.24 2 002.40 10 13 840.00 -20.37 9 474.50 Four-way 3 -8.02 0.25 -186.31 5 -7.74 1.70 -615.87 7 -19.67 3.66 -1 173.30 10 126.58 13.93 -2 455.70 表 2 计算结果
Table 2. Calculated results
v0/(m·s-1) σmax/MPa εmax/10-3 Position with maximum stress 3 285.34 2.28 Tee-out 5 285.37 2.28 Tee-out 7 285.30 2.28 Tee-out 10 287.11 2.29 Tee-out -
[1] SCHÜTZ W.A history of fatigue[J].Engineering Fracture Mechanics, 1996, 54(2):263-300. [2] KIM W H, LAIRD C.Crack nucleation and stage I propagation in high strain fatigue-Ⅱ.mechanism[J].Acta Metallurgica, 1978, 26(5):789-799. doi: 10.1016/0001-6160(78)90029-9 [3] AKANO T T, FAKINLEDE O A.Fatigue failure model for polymeric compliant systems[J].ISRN Polymer Science, 2013:1-11. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_e4e362121a4555d8ec742349d7a2cee5 [4] STEPHENS R I, FATEMI A, STEPHENS R R, et al.Metal fatigue in engineering[M].John Wiley & Sons, 2000:280-294. [5] BATHIAS C.There is no infinite fatigue life in metallic materials[J].Fatigue & Fracture of Engineering Materials & Structures, 1999, 22(7):559-565. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cd570f6f3dfaee4afa2406028158d3cf [6] CHAN K S, LANKFORD J.A crack-tip strain model for the growth of small fatigue cracks[J].Scripta Metallurgica, 1983, 17(4):529-532. doi: 10.1016/0036-9748(83)90346-0 [7] DE LOS RIOS E R, TANG Z, MILLER K J.Short crack fatigue behaviour in a medium carbon steel[J].Fatigue & Fracture of Engineering Materials & Structures, 1984, 7(2):97-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000003252453 [8] HOBSON P D.The formulation of a crack growth equation for short cracks[J].Fatigue & Fracture of Engineering Materials & Structures, 1982, 5(4):323-327. doi: 10.1111/j.1460-2695.1982.tb01241.x/full [9] HUSSAIN K, DE LOS RIOS E R, NAVARRO A.A two-stage micromechanics model for short fatigue cracks[J].Engineering Fracture Mechanics, 1993, 44(3):425-436. http://www.sciencedirect.com/science/article/pii/001379449390034P [10] HUSSAIN K.Short fatigue crack behaviour and analytical models:a review[J].Engineering Fracture Mechanics, 1997, 58(4):327-354. http://www.sciencedirect.com/science/article/pii/S0013794497001021 [11] 龙飞飞.水流作用下含裂纹悬空管道数值分析[D].大庆: 大庆石油学院, 2008: 33-93. [12] 郑福恩.海底管道的疲劳失效分析[J].港工技术, 2012, 49(4):48-50. http://d.old.wanfangdata.com.cn/Periodical/ggjs201204014ZHENG F E.Fatigue failure analysis of submarine pipelines[J].Port Engineering Technology, 2012, 49(4):48-50. http://d.old.wanfangdata.com.cn/Periodical/ggjs201204014 [13] 张大勇, 岳前进, 李刚, 等.冰振下海洋平台上部天然气管线振动分析[J].天然气工业, 2006, 26(12):139-141. doi: 10.3321/j.issn:1000-0976.2006.12.039ZHANG D Y, YUE Q J, LI G, et al.Dynamic response analysis on gas piplines exposure to ice-induced vibration on offshore platform[J].Natural Gas Industry, 2006, 26(12):139-141. doi: 10.3321/j.issn:1000-0976.2006.12.039 [14] 雷柏茂, 万力, 何觅, 等.余热排出系统管道热疲劳裂纹萌生方向的理论和数值研究[J].原子能科学技术, 2015, 49(4):713-718. http://d.old.wanfangdata.com.cn/Periodical/yznkxjs201504022LEI B M, WAN L, HE M, et al.Theoretical and numerical research on thermal fatigue crack initiation direction in pipe of residual heat removal system[J].Atomic Energy Science and Technology, 2015, 49(4):713-718. http://d.old.wanfangdata.com.cn/Periodical/yznkxjs201504022 [15] 姚程, 张广辉, 刘占生.背压脉动引起的超声速进气道流固耦合振动分析[J].推进技术, 2016, 37(8):1447-1454. http://d.old.wanfangdata.com.cn/Periodical/tjjs201608006YAO C, ZHANG G H, LIU Z S.Fluid-structure vibration analysis of an supersonic intake under back pressure fluctuation[J].Journal of Propulsion Technology, 2016, 37(8):1447-1454. http://d.old.wanfangdata.com.cn/Periodical/tjjs201608006 [16] 梁文甫, 刘彤, 刘敏珊.含裂纹核级管道三维有限元分析与LBB评定[J].压力容器, 2014, 31(11):56-60. doi: 10.3969/j.issn.1001-4837.2014.11.009LIANG W F, LIU T, LIU M S.Three-dimensional finite element analysis and leak before break (LBB) assessment of nuclear piping containing creak[J].Pressure Vessel Technology, 2014, 31(11):56-60. doi: 10.3969/j.issn.1001-4837.2014.11.009 [17] 张乐迪, 张显余.飞机液压管道动特性研究及疲劳寿命估算[J].航空维修与工程, 2015(1):89-91. doi: 10.3969/j.issn.1672-0989.2015.01.042ZHANG Y D, ZHANG X Y.Study of aircraft hydraulic pipeline dynamic characteristics and fatigue estimation[J].Aviation Maintenance & Engineering, 2015(1):89-91. doi: 10.3969/j.issn.1672-0989.2015.01.042