Influence of Hole Size of Semi-Armor-Piercing Warhead on Ship's Cabin Implosion Effect
-
摘要: 研究了半穿甲战斗部所造成的舱壁破孔结构对小型舰船舱室内爆效应的影响,采用LS-DYNA有限元软件对小型舰船舱室的内爆试验进行数值模拟分析,采用合理的材料本构关系与状态方程以及材料和结构连接处的失效准则,通过与等比例试验中舱内冲击波超压峰值进行对比,验证了模型的有效性。通过建立不同尺寸弹孔,分析弹孔尺寸对舱室内爆效应的影响。结果表明:破孔结构导致舱室内爆时冲击波超压峰值下降,冲击波超压峰值的出现时间延后;当弹孔直径小于舱壁长度的1/10时,导弹穿孔对舱室内爆效应所造成的影响可忽略。Abstract: In this study, the influence of bulkhead perforation structure caused by half armor piercing warhead on the cabin burst effect is studied.LS-DYNA finite element software is used to simulate the internal explosion test of the small ship cabin with the help of reasonable material constitutive relation, equation of state, and the failure criterion at the connection between the material and the structure.The effectiveness of the model is verified by comparing the calculated peak value of shock wave in cabin with corresponding experimental data.By establishing different sizes of bullet holes, the influence of bullet hole size on cabin explosion effect is analyzed.It is concluded that peak value of shock wave overpressure decreases and the peak time of shock wave overpressure is delayed.When the diameter of the bullet hole is less than 1/10 of the bulkhead, the impact of the missile on the chamber explosion effect is negligible.
-
Key words:
- cabin implosion /
- semi-armor-piercing warhead /
- hole structure
-
表 1 测试点超压峰值对比
Table 1. Comparison of experimental and calculated peak overpressure at different test points
Test point Distance from explosive source/m Test of overpressure peak/MPa Calculation of overpressure peak/MPa Calculation error/% 1-1 1.50 1.72 1.23 28.4 1-2 1.63 1.56 1.35 13.4 1-3 1.95 4.03 3.78 6.2 1-4 2.09 5.24 4.31 17.7 1-5 2.46 7.78 7.58 2.6 1-6 2.21 3.37 3.45 2.4 1-7 2.12 3.65 3.42 5.5 1-8 1.68 0.65 0.88 26.1 表 2 常见半穿甲反舰导弹基本参数
Table 2. Basic parameters of a common semi armor piercing anti-ship missile
Warhead name Warhead weight/kg Impact velocity/Ma Warhead diameter/mm Tomahawk 454 0.72 530 Exocet 165 0.93 350 Otomat 210 0.90 400 C101 300 2.00 400 HY-2G 500 0.90 540 Cormorants I 220 0.90 300 AGM-84 230 0.75 340 -
[1] 王晓强, 朱锡.舰船用钢的抗弹道冲击性能研究进展[J].中国造船, 2010, 51(1):227-236. doi: 10.3969/j.issn.1000-4882.2010.01.029WANG X Q, ZHU X.Review on ballistic impact resistance of ship building steel[J].Shipbuilding of China, 2010, 51(1):227-236. doi: 10.3969/j.issn.1000-4882.2010.01.029 [2] FELDGUN V R, KARINSKI Y S, YANKELEVSKY D Z.A simplified model with lumped parameters for explosion venting simulation[J].International Journal of Impact Engineering, 2011, 38(12):964-975. doi: 10.1016/j.ijimpeng.2011.08.004 [3] 孔祥韶, 吴卫国, 李晓彬, 等.舰船舱室内部爆炸的数值模拟研究[J].中国舰船研究, 2009, 4(4):7-11. doi: 10.3969/j.issn.1673-3185.2009.04.002KONG X S, WU W G, LI X B, et al.Numercial simulation of cabin structure under inner explosion[J].Chinese Journal of Ship Research, 2009, 4(4):7-11. doi: 10.3969/j.issn.1673-3185.2009.04.002 [4] 孔祥韶, 徐维铮, 郑成, 等.多层防护结构舱内爆炸试验[J].船舶力学, 2017, 21(1):76-89. doi: 10.3969/j.issn.1007-7294.2017.01.010KONG X S, XU W Z, ZHENG C, et al.Experiment of a multi-layer protective structure under an inner explosion[J].Journal of Ship Mechanics, 2017, 21(1):76-89. doi: 10.3969/j.issn.1007-7294.2017.01.010 [5] 朱锡, 白雪飞, 黄若波, 等.船体板架在水下接触爆炸作用下的破口试验[J].中国造船, 2003, 44(1):46-52. doi: 10.3969/j.issn.1000-4882.2003.01.007ZHU X, BAI X F, HUANG R B, et al.Crevasse experiment research of plate membrance in vessels subjected to underwater contact explosion[J].Shipbuilding of China, 2003, 44(1):46-52. doi: 10.3969/j.issn.1000-4882.2003.01.007 [6] RAPOPORT J, RUBIN M B.Separation and velocity dependence of the drag force applied to a rigid ovoid of Rankine nosed projectile penetrating an elastic-perfectly-plastic target[J].International Journal of Impact Engineering, 2009, 36(8):1012-1018. doi: 10.1016/j.ijimpeng.2008.11.005 [7] 朱建方, 王伟力, 曾亮.舰艇舱室内爆毁伤的建模与仿真分析[J].系统仿真学报, 2009, 21(22):7066-7068. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb200922015ZHU J F, WANG W L, ZENG L.Modeling and simulation of damage effect of ship cabin subject to internal explosion[J].Journal of System Simulation, 2009, 21(22):7066-7068. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb200922015 [8] 田少康, 李席, 刘波, 等.一种RDX基温压炸药的JWL-Miller状态方程研究[J].含能材料, 2017, 25(3):226-231. http://d.old.wanfangdata.com.cn/Periodical/hncl201703009TIAN S K, LI X, LIU B, et al.Study on JWL-Miller equation of state of RDX-based thermobaric explosive[J].Chinese Journal of Energetic Materials, 2017, 25(3):226-231. http://d.old.wanfangdata.com.cn/Periodical/hncl201703009 [9] 李席, 王伯良, 韩早, 等.密闭空间内温压炸药爆炸冲击波的数值模拟研究[C]//第16届全国激波与激波管学术会议论文集.洛阳, 2014: 713-717.LI X, WANG B L, HAN Z, et al.Numerical simulation of thermobaric explosives in a confined space[C]//The Proceedings of 16th National Symposium on Shock and Shock Tube.Luoyang, 2014: 713-717. [10] 樊壮卿.内爆炸效应等效的缩比舰船舱室设计[D].烟台: 海军航空工程学院, 2014: 55-57.FAN Z Q.Design on scaling cabin equivalent with damage effect of internal warship cabin explosion[D].Yantai: Naval Aeronautical Engineering Institute, 2014: 55-57. [11] 陈昊, 陶钢, 蒲元.冲击波的超压测试与威力计算[J].火工品, 2010(1):21-24. doi: 10.3969/j.issn.1003-1480.2010.01.006CHEN H, TAO G, PU Y.The measurements of overpressure of shock wave and analysis of TNT equivalent[J].Initiators & Pyrotechnics, 2010(1):21-24. doi: 10.3969/j.issn.1003-1480.2010.01.006 [12] 姬建荣, 苏建军, 张玉磊, 等.不同量级TNT爆炸冲击波正压时间的试验研究[J].科学技术与工程, 2018, 18(5):202-206. doi: 10.3969/j.issn.1671-1815.2018.05.034JI J R, SU J J, ZHANG Y L, et al.The experimental study on explosion positive pressure time of different orders of magnitude TNT[J].Science Technology and Engineering, 2018, 18(5):202-206. doi: 10.3969/j.issn.1671-1815.2018.05.034