A Comparative Study on Influence of High-Pressure Shocking and Radiation Damage on Titanite
-
摘要: 高压和辐照这两种极端条件会造成晶体材料的晶体结构发生改变或损伤。以榍石(CaTiSiO5)为研究对象,利用冲击高压和样品回收技术,探索冲击高压作用后结构的变化规律,并与辐照造成的损伤榍石作对比研究,认识冲击高压与辐照造成榍石结构损伤的异同。研究表明:冲击高压作用下,晶态的榍石出现结构损伤和非晶化,出现类似于榍石的辐照损伤现象,但具体过程和受损的晶体结构有明显不同。具体表现为:X射线衍射、红外和拉曼光谱的特征峰强度减弱,谱线变宽,细节丢失;冲击高压导致晶态榍石拉曼光谱的Ti–O伸缩振动主峰出现红移,与辐照损伤蜕晶化过程出现的蓝移相反。此外,晶胞参数a、b、c和晶胞体积V减小,与辐照损伤过程相反。Abstract: High pressure shock and α-decay radiation are two extreme conditions capable of leading to damages on crystal lattices of solid materials. The present work investigated the influence of shocking on the structural variations of titanite (CaTiSiO5) using a gas gun shock-wave technology. The results were used to compare the similarities and differences in spectral and structural changes between shocked and α-decay radiation damaged titanite, as α-decay radiation process was considered as involved in a fast high pressure process. The results showed that high pressure shock and α-decay radiation can both produce defective crystal lattice and even amorphous phases in titanite, resulting in a decrease in band intensity, a line boarding and a loss of spectral details in X-ray diffraction patterns, infrared and Raman spectra. However, there are distinct differences in the detailed processes and damage mechanisms between the two processes. High-pressure shock causes the main peak of the Ti-O stretching vibration in titanite shifts to a lower frequency, which is opposite to its behaviour in radiation damaged samples. Furthermore, shocking leads to a reduction of unit cell parameters a, b, c and cell volume V, quite contrary to a unit-cell swelling caused by radiation damage.
-
Key words:
- titanite /
- shock /
- high pressure /
- radiation damage /
- amorphous
-
表 1 XRD谱结构精修数据
Table 1. Rietveld refinement data by XRD patterns
Pressure/GPa a/Å b/Å c/Å β/(o) V/Å3 wRp Rp C2 0 7.10 8.77 6.60 113.82 376.37 0.11 0.08 3.79 61.4 7.06 8.74 6.58 113.81 371.75 0.07 0.06 3.08 83.8 7.05 8.72 6.56 113.79 368.86 0.04 0.04 1.18 表 2 高压冲击和核辐照对榍石各基团的影响
Table 2. Influence of shock and α-decay radiation on structural units of crystalline titanite
Structural unit Impact of shock α-decay radiation [CaO7] polyhedra Decrease in IR intensity by 63% Decrease in IR intensity by 49% [TiO6] octahedra Decrease in IR intensity by 61% Decrease in IR intensity by 77% [SiO4] tetrahedra Increase in IR band width by 19% Increase in IR band width by 59% -
[1] GASCOYNE M. Evidence for the stability of the potential nuclear waste host, sphene, over geological time, from uranium-lead ages and uranium-series measurements [J]. Applied Geochemistry, 1986, 1(2): 199–210. doi: 10.1016/0883-2927(86)90004-1 [2] HAWTHORNE F C, GROAT L A, RAUDSEPP M, et al. Alpha-decay damage in titanite [J]. American Mineralogist, 1991, 76(3/4): 370–396. [3] STOREY C D, JEFFRIES T E, SMITH M. Common lead-corrected laser ablation ICP-MS U-Pb systematics and geochronology of titanite [J]. Chemical Geology, 2006, 227(1/2): 37–52. [4] 向华, 张利, 钟增球, 等. 榍石: U-Pb定年及变质P-T-t轨迹的建立 [J]. 地球科学进展, 2007, 22(12): 1258–1267 doi: 10.3321/j.issn:1001-8166.2007.12.006XIANG H, ZHANG L, ZHONG Z Q, et al. Titanite: U-Pb dating and applications on defining P-T-t path of metamorphic rocks [J]. Advances in Earth Science, 2007, 22(12): 1258–1267 doi: 10.3321/j.issn:1001-8166.2007.12.006 [5] SPEER J A, GIBBS G V. The crystal structure of synthetic titanite, CaTiOSiO4, and the domain textures of natural titanites [J]. American Mineralogist, 1976, 61(3/4): 238–247. [6] GHOSE S, ITO Y, HATCH D M. Paraelectric-antiferroelectric phase transition in titanite, CaTiSiO5 [J]. Physics and Chemistry of Minerals, 1991, 17(7): 591–603. [7] TAYLOR M, BROWN G E. High-temperature structural study of the P21/a↔A2/a phase transition in synthetic titanite, CaTiSiO5 [J]. American Mineralogist, 1976, 61(5/6): 435–447. [8] KUNZ M, XIROUCHAKIS D, LINDSLEY D H, et al. High-pressure phase transition in titanite (CaTiOSiO4) [J]. American Mineralogist, 1996, 81(11/12): 1527–1530. [9] ANGEL R J, KUNZ M, MILETICH R, et al. High-pressure phase transition in CaTiOSiO4 titanite [J]. Phase Transitions: A Multinational Journal, 1999, 68(3): 533–543. doi: 10.1080/01411599908224532 [10] KUNZ M, ARLT T, STOLZ J. In situ powder diffraction study of titanite (CaTiOSiO4) at high pressure and high temperature [J]. American Mineralogist, 2000, 85(10): 1465–1473. doi: 10.2138/am-2000-1016 [11] RATH S, KUNZ M, MILETICH R. Phase transition mechanisms in the mineral titanite CaTiOSiO4 under high pressure—a X-ray single crystal study between 7 GPa and 10 GPa [C]//AGU Fall Meeting Abstracts. American Geophysical Union, 2001. [12] 祝向平, 秦善, 刘景, 等. 榍石的高压结构研究 [J]. 矿物岩石, 2006, 26(3): 6–11 doi: 10.3969/j.issn.1001-6872.2006.03.002ZHU X P, QIN S, LIU J, et al. Research of high-pressure structure of titanite [J]. Journal of Mineralogy and Petrology, 2006, 26(3): 6–11 doi: 10.3969/j.issn.1001-6872.2006.03.002 [13] MIOTELLO A, KELLY R. Revisiting the thermal-spike concept in ion-surface interactions [J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1997, 122(3): 458–469. doi: 10.1016/S0168-583X(96)00665-9 [14] MELDRUM A, ZINKLE S J, BOATNER L A, et al. A transient liquid-like phase in the displacement cascades of zircon, hafnon and thorite [J]. Nature, 1998, 395(6697): 56–58. doi: 10.1038/25698 [15] TRACHENKO K, DOVE M T, SALJE E K H. Structural changes in zircon under α-decay irradiation [J]. Physical Review B, 2002, 65(18): 180102. doi: 10.1103/PhysRevB.65.180102 [16] GUCSIK A, ZHANG M, KOEBERL C, et al. Infrared and Raman spectra of ZrSiO4 experimentally shocked at high pressures [J]. Mineralogical Magazine, 2004, 68(5): 801–811. doi: 10.1180/0026461046850220 [17] MEYERS M A. Shock waves: equations of state [M]. John Wiley & Sons Inc., 1994. [18] NELLIS W J, SEAMAN L, GRAHAM R A. Shock waves in condensed matter [M]. New York: American Institute of Physics, 1982. [19] 经福谦, 陈俊祥. 动高压原理与技术 [M]. 北京: 国防工业出版社, 2006.JING F Q, CHEN J X. Principle and technology of dynamic high pressure [M]. Beijing: National Defense Industry Press, 2006. [20] ZHANG M, BOATNER L A, SALJE E K H, et al. Micro-Raman and micro-infrared spectroscopic studies of Pb-and Au-irradiated ZrSiO4: optical properties, structural damage, and amorphization [J]. Physical Review B, 2008, 77(14): 144110. doi: 10.1103/PhysRevB.77.144110 [21] ZHANG M, SALJE E K H, BISMAYER U, et al. Metamictization and recrystallization of titanite: an infrared spectroscopic study [J]. American Mineralogist, 2002, 87(7): 882–890. doi: 10.2138/am-2002-0711 [22] ZHANG M, SALJE E K H, REDFERN S A T, et al. Intermediate structures in radiation damaged titanite (CaTiSiO5): a Raman spectroscopic study [J]. Journal of Physics: Condensed Matter, 2013, 25(11): 115402. doi: 10.1088/0953-8984/25/11/115402 [23] SALJE E K H, TAYLOR R D, SAFARIK D J, et al. Evidence for direct impact damage in metamict titanite CaTiSiO5 [J]. Journal of Physics: Condensed Matter, 2011, 24(5): 052202. [24] 贺红亮, 金孝刚, 陈攀森, 等. Fe40Ni40P12B8非晶合金的冲击晶化实验研究 [J]. 高压物理学报, 1989, 3(3): 211–220 doi: 10.11858/gywlxb.1989.03.006HE H L, JIN X G, CHEN P S, et al. Experimental studies on the crystallization of amorphous Fe40Ni40P12B8 alloy under shock loading [J]. Chinese Journal of High Pressure Physics, 1989, 3(3): 211–220 doi: 10.11858/gywlxb.1989.03.006 [25] 祁美兰. 高纯铝拉伸型动态破坏的临界行为研究 [D]. 武汉:武汉理工大学, 2006.QI M L. Critical behavior in dynamic tensile fracture of high purity aluminum [D]. Wuhan: Wuhan University of Technology, 2006. [26] VANCE E R, METSON J B. Radiation damage in natural titanites [J]. Physics and Chemistry of Minerals, 1985, 12(5): 255–260. doi: 10.1007/BF00310337 [27] SALJE E, SCHMIDT C, BISMAYER U. Structural phase transition in titanite, CaTiSiO5: a Raman spectroscopic study [J]. Physics and Chemistry of Minerals, 1993, 19(7): 502–506. [28] ZHANG M, GROAT L A, SALJE E K H, et al. Hydrous species in crystalline and metamict titanites [J]. American Mineralogist, 2001, 86(7/8): 904–909. [29] SCHNEIDER H. Infrared spectroscopic studies of experimentally shock-loaded quartz [J]. Meteoritics, 1978, 13(2): 227–234. doi: 10.1111/maps.1978.13.issue-2 [30] THIEBLOT L, TEQUI C, RICHET P. High-temperature heat capacity of grossular (Ca3Al2Si3O12), enstatite (MgSiO3), and titanite (CaTiSiO5) [J]. American Mineralogist, 1999, 84(5/6): 848–855. [31] RÍOS S, BOFFA-BALLARAN T. Microstructure of radiation-damaged zircon under pressure [J]. Journal of Applied Crystallography, 2003, 36(4): 1006–1012. doi: 10.1107/S0021889803008574 [32] TRACHENKO K, BRAZHKIN V V, TSIOK O B, et al. Pressure-induced structural transformation in radiation-amorphized zircon [J]. Physical Review Letters, 2007, 98(13): 135502. doi: 10.1103/PhysRevLett.98.135502 [33] ZHANG M, SALJE E K H, CAPITANI G C, et al. Annealing of-decay damage in zircon: a Raman spectroscopic study [J]. Journal of Physics: Condensed Matter, 2000, 12(13): 3131. doi: 10.1088/0953-8984/12/13/321 [34] ZHANG M. Raman study of the crystalline-to-amorphous state in alpha-decay-damaged materials [M]//MAAZ K. Raman Spectroscopy and Applications. InTech, 2017: 103–122.