Raman Evidences for Phase Transition of Sodium Perchlorate at High Pressure
-
摘要: 利用金刚石压腔高压装置,在0~20 GPa压力范围对高氯酸钠(NaClO4)开展室温高压原位拉曼光谱测试,结合密度函数理论,计算NaClO4几种可能结构的拉曼光谱,研究NaClO4的压致相变现象,并确定其高压相晶体结构。实验结果显示:常温下硬石膏型结构的NaClO4在约4 GPa时开始相变,在低压相ClO4-四面体内模振动ν1(Ag)拉曼峰的低波数侧出现新峰,并在ν2、ν3、ν4波数区出现多个新峰,反映高压相仍保持ClO4-四面体配位特征;如同NaClO4低压相,高压相也未观察到离子间的晶格振动峰;相变在6.1 GPa时转变完全,直到最高实验压力19.5 GPa,也没有观察到进一步的相变现象。卸压过程中,于3.1 GPa开始从高压相转变成低压硬石膏相,1.7 GPa时相变完成。对比8.8 GPa实验观察的NaClO4高压相拉曼光谱和理论计算的8.0 GPa时3种可能高压相(AgMnO4型、重晶石型和独居石型)的拉曼光谱发现,实验观测结果与计算的独居石型结构基本一致,而与AgMnO4型结构和重晶石型结构有明显差别。由此确定实验观察的NaClO4高压相为独居石型结构,与相同结构的典型矿物硬石膏(CaSO4)于2 GPa转变成独居石结构相一致。上述实验现象表明,NaClO4在4 GPa左右发生可逆的重构型相变,与文献报道的NaClO4于2 GPa左右转变成AgMnO4型结构、于3 GPa左右进一步转变成重晶石型结构不一致,推测可能与他们的样品中含有少量水有关,或与高温高压实验环境有关,高压同时高温也许导致NaClO4更复杂的变化。研究结果对于理解火星上广泛存在的高氯酸盐是否与火星内部火山作用相关,以及地球内部氯元素在板块俯冲、地幔柱等物质循环过程中的可能变化和作用有所助益。Abstract: Using a diamond anvil cell apparatus, we investigated the sodium perchlorate (NaClO4) by Raman spectroscopy at pressure up to 20 GPa, and calculated the Raman spectra of anhydrite-(Cmcm), monazite-(P21/n), AgMnO4-(P21/n), and barite-type (Pnma) structures of NaClO4 by density function theory.The experimental data show that anhydrite-type NaClO4 undergoes a structural transition at about 4 GPa.A new peak at lower Raman frequencies (975 cm-1) than that of the ClO4- internal mode ν1 (Ag) of the NaClO4 ambient phase was obviously observed at 4.4 GPa.At the same time, several peaks at the corresponding wave numbers of the ClO4- internal modes (ν2、ν3、ν4) arise.The phase transition is completed at about 6.1 GPa, and remains stable up to 19.5 GPa.The high pressure structure can be recovered at about 3.1 GPa in decompression.By comparison with the calculated Raman spectral profiles (at 8.0 GPa) of three potential high pressure structures, we infer that the high pressure phase has a monoclinic monazite-type structure.The pressure-induced phase transition of NaClO4 is consistent with the anhydrite-monazite phase transition found in CaSO4 at about 2 GPa.However, our finding appears inconsistency with the previous observations that the anhydrite-type NaClO4 transforms to AgMnO4-type at about 2 GPa and furthermore to the barite-type structure at around 3 GPa.The previous results could probably be influenced by the moisture of the sample combining with the high temperature and high pressure conditions.It may bring more complicated changes by simultaneous high pressure and high temperature environments.The research progress contributes to the understanding of not only the relationship between volcanic activity and the widespread distribution of perchlorate on Mars, but also the changes and functions of chlorine element during the recycles of subduction and mantle plume in the Earth's deep interior.
-
Key words:
- NaClO4 /
- high pressure /
- Raman spectrum /
- phase transition /
- Monazite-type structure
-
图 2 加压和卸压过程中NaClO4的代表性拉曼光谱(图 2(a)显示加压过程,其中4.1GPa曲线指示NaClO4开始相变;图 2(b)表示卸压过程,3.5GPa曲线表示相变开始。箭头及对应数字指示相变过程中出现的新峰。Ⅰ和Ⅱ分别代表硬石膏相和独居石相,Ⅰ+Ⅱ和(Ⅰ+Ⅱ)分别代表加压和卸压过程中两相共存。ν2、ν3和ν4振动区间纵坐标放大1倍)
Figure 2. Several representative Raman spectra of NaClO4 observed at various pressures (The Fig. 2(a) shows Raman spectra collected in the compressing process, in which the 4.1GPa profile indicates the beginning of phase transition.The Fig. 2(b) displays Raman spectra observed in the decompressing process, in which the 3.5GPa spectrum manifests the phase transition occurring.The arrows and its corresponding numbers denote the emerging new peaks. Ⅰ, Ⅱ, Ⅰ+Ⅱ, and (Ⅰ+Ⅱ) correspond to anhydrite-type, monazite-type and two-phase coexistence of NaClO4 in compression and decompression, respectively.In the graphics, the vertical axis of the ν2, ν3 and ν4 sections are doubled.)
图 3 NaClO4拉曼频率随压力的变化关系(Ⅰ和Ⅱ分别代表硬石膏相和独居石相,Ⅰ+Ⅱ和(Ⅰ+Ⅱ)分别代表加压和卸压过程中两相共存;三角形和圆形分别表示硬石膏相和独居石相,实心和空心分别代表加压过程和卸压过程)
Figure 3. Pressure dependence of Raman vibrational modes of NaClO4 (The Roman letters of Ⅰ, Ⅱ, Ⅰ+Ⅱ, (Ⅰ+Ⅱ) correspond to anhydrite-type, monazite-type and two-phase coexistence of NaClO4 on compression and decompression, respectively.The triangles and cycles denote the anhydrite-type and monazite type NaClO4, of which solid and open symbols indicate the compressing and decompressing process, respectively.)
图 4 含少量水的NaClO4在加压过程中的代表性拉曼光谱(2.0GPa曲线表示开始相变,4.2GPa曲线表示两相共存。图中ν2、ν3、ν4的振动区间纵坐标放大1倍)
Figure 4. Representative Raman spectra of NaClO4 with minor water at various pressures observed in compression process (The 2.0GPa spectrum suggests the beginning of phase transition, indicated by the new Raman frequency bands.The 4.2GPa spectrum reflects coexistence of the high-pressure phase and low-pressure phase of NaClO4. The vertical axis of the ν2, ν3, ν4 sections are doubled.)
图 5 实验观察和理论计算的NaClO4拉曼光谱(曲线a和曲线c分别为常压和8.8GPa时实验观测的拉曼光谱,曲线b为理论计算的1.5GPa时NaClO4硬石膏相的拉曼光谱,曲线d、e、f分别为理论计算的8.0GPa时独居石相﹑重晶石相和AgMnO4相NaClO4的拉曼光谱)
Figure 5. Calculated Raman spectra of anhydrite-type, monazite-type, barite-type, and AgMnO4-type NaClO4 and experimental spectra (Experimental spectra collected at 0.1MPa and 8.8GPa are shown as a and c curves.The b spectrum is the calculated Raman spectrum at 1.5GPa with anhydrite-type structure.The d, e, f curves are the calculated Raman spectra at 8.0 GPa with monazite-type, barite-type, and AgMnO4-type structure, respectively.)
表 1 群论预测NaClO4硬石膏相、独居石相、AgMnO4相和重晶石相的拉曼振动模
Table 1. Group theory prediction of Raman modes of anhydrite-type, monazite-type, AgMnO4-type, and barite-type NaClO4
Internal vibrationalmodes Symmetry classification Anhydrite-type Monazite-type AgMnO4-type Barite-type ν1 Ag Ag+Bg Ag+Bg Ag+B2g ν2 Ag+B2g 2Ag+2Bg 2Ag+2Bg Ag+B1g+ B2g+B3g ν3 Ag+B1g+B3g 3Ag+3Bg 3Ag+3Bg 2Ag+B1g+ 2B2g+ B3g ν4 Ag+B1g+B3g 3Ag+3Bg 3Ag+3Bg 2Ag+B1g+ 2B2g+ B3g Total 6Ag+5B1g+2B2g+5B3g 18Ag+ 18Bg 18Ag+ 18Bg 11Ag+7B1g+11B2g+7B3g 表 2 实验观察(0.1MPa)及理论计算(1.5GPa)的硬石膏型NaClO4拉曼频率及其归属
Table 2. Raman modes assignment and frequencies of anhydrite-type NaClO4 observed at 0.1MPa and calculated at 1.5GPa
Internal vibrational modes Symmetry classification Raman frequency/cm-1 Exp. Calc. Ref.[30] Ref.[31] ν2 B2g 444 424 444 444 Ag 481 466 484 483 ν4 B1g 620 593 620 629 B3g 628 600 6296 620 Ag 655 635 654 629 ν1 Ag 952 932 953 953 ν3 B1g 1089 1069 1088 1148 Ag 1098 1085 1097 1145 B3g 1146 1132 1148 1087 表 3 NaClO4硬石膏相和独居石相的拉曼频率随压力的变化
Table 3. Pressure coefficients of observed Raman bands for anhydrite-type and monazite-type NaClO4
Anhydrite-type Monazite-type Internal vibrationalmodes Symmetryclassification ω/cm-1
(p=3.0GPa)(dω/dp)/
(cm-1·GPa-1)Internal vibrationalmodes Symmetryclassification ω/cm-1(p=7.0GPa) (dω/dp)/(cm-1·GPa-1) ν2 B2g 446 0.5(2) ν2 Bg 465 2.2(1) Ag 496 4.1(2) Ag 480 2.4(0) ν4 B1g 625 1.5(1) Ag 497 2.4(1) B3g 635 2.0(2) Bg 510 2.6(1) Ag 668 3.3(4) ν4 Ag 619 0.8(1) ν1 Ag 974 6.8(3) Bg 631 1.4(1) ν3 B1g 1102 3.9(1) Ag 643 1.8(1) Ag 1116 5.3(1) Bg 659 2.3(1) B3g 1174 7.8(7) Ag 667 1.8(1) ν1 Ag 986 4.7(1) ν3 Ag 1113 3.9(1) Ag 1132 4.1(1) Ag 1148 4.3(1) Bg 1160 3.9(1) Bg 1172 5.0(1) Bg 1208 5.3(2) Note:Numbers in parentheses indicate standard deviation. -
[1] MCDONOUGH W F, SUN S S.The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4):223-253. [2] AIUPPA A, BAKER D R, WEBSTER J D.Halogens in volcanic systems[J]. Chemical Geology, 2009, 263(1):1-18. [3] KENDRICK M A, SCAMBELLURI M, HONDA M, et al.High abundances of noble gas and chlorine delivered to the mantle by serpentinite subduction[J]. Nature Geoscience, 2011, 4(11):807. doi: 10.1038/ngeo1270 [4] PHILIPPOT P, AGRINIER P, SCAMBELLURI M.Chlorine cycling during subduction of altered oceanic crust[J]. Earth and Planetary Science Letters, 1998, 161(1):33-44. [5] ROBERGE M, BUREAU H, BOLFAN-CASANOVA N, et al.Chlorine in wadsleyite and ringwoodite:an experimental study[J]. Earth and Planetary Science Letters, 2017, 467:99-107. doi: 10.1016/j.epsl.2017.03.025 [6] FILIBERTO J, TREIMAN A H.Martian magmas contained abundant chlorine, but little water[J]. Geology, 2009, 37(12):1087-1090. doi: 10.1130/G30488A.1 [7] HECHT M H, KOUNAVES S P, QUINN R C, et al.Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site[J]. Science, 2009, 325(5936):64-67. doi: 10.1126/science.1172466 [8] KOUNAVES S P, CARRIER B L, O'NEIL G D, et al.Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001:implications for oxidants and organics[J]. Icarus, 2014, 229:206-213. doi: 10.1016/j.icarus.2013.11.012 [9] CHEVRIER V F, HANLEY J, ALTHEIDE T S.Stability of perchlorate hydrates and their liquid solutions at the Phoenix landing site, Mars[J]. Geophysical Research Letters, 2009, 36(10):L10202. doi: 10.1029/2009GL037497 [10] ZHANG W, OGANOV A R, GONCHAROV A F, et al.Unexpected stable stoichiometries of sodium chlorides[J]. Science, 2013, 342(6165):1502-1505. doi: 10.1126/science.1244989 [11] 田雨, 刘雪廷, 何运鸿, 等.NaCl-O2体系高温高压化学反应的拉曼光谱证据[J].高压物理学报, 2017, 31(6):692-697. doi: 10.11858/gywlxb.2017.06.003TIAN Y, LIU X T, HE Y H, et al.Raman evidences of chemical reaction of NaCl-O2 system at high pressure and high temperature[J]. Chinese Journal of High Pressure Physics, 2017, 31(6):692-697. doi: 10.11858/gywlxb.2017.06.003 [12] WARTCHOW R, BERTHOLD H J.Verfeinerung der kristallstruktur des natriumperchlorats NaClO4[J]. Zeitschrift für Kristallographie-Crystalline Materials, 1978, 147(1/2/3/4):307-318. [13] YAMAMOTO S, SHINNAKA Y.X-ray study of phase transition in NaClO4[J]. Journal of the Physical Society of Japan, 1983, 52(9):3080-3084. doi: 10.1143/JPSJ.52.3080 [14] LIU J, DUAN C, MEI W N, et al.Order-disorder structural phase transitions in alkali perchlorates[J]. Journal of Solid State Chemistry, 2002, 163(1):294-299. doi: 10.1006/jssc.2001.9411 [15] BERTHOLD H J, KRUSKA B G, WARTCHOW R.The crystal structure of the orientationally disordered, cubic high-temperature phase of sodium perchlorate NaClO4[J]. Zeitschrift für Naturforschung B, 1979, 34(3):522-523. [16] SHIMADA S.Acoustic emission in the process of dehydration and thermal decomposition of NaClO4·H2O[J]. Thermochimica Acta, 1992, 196(2):237-246. doi: 10.1016/0040-6031(92)80087-D [17] KOHSAKA Y, AZUMA M, YAMADA I, et al.Growth of Na-doped Ca2CuO2Cl2 single crystals under high pressures of several GPa[J]. Journal of the American Chemical Society, 2002, 124(41):12275-12278. doi: 10.1021/ja026680i [18] BRIDGMAN P W.Polymorphic transitions of 35 substances to 50000 kg/cm2//Proceedings of the American Academy of Arts and Sciences.American Academy of Arts & Sciences, 1937, 72(2):45-136. https://es.scribd.com/document/228208752/31212302-Science-Magazine-5756-2005-12-23 [19] PISTORIUS C, BOEYENS J C A, CLARK J B.Phase diagrams of NaBF4 and NaClO4 to 40 kbar and the crystal-chemical relationship between structures of CaSO4, AgMnO4, BaSO4 and high-NaClO4[J]. High Temperatures High Pressures, 1969, 1:41-52. [20] FUKUNAGA O, YAMAOKA S.Phase transformations in ABO4 type compounds under high pressure[J]. Physics and Chemistry of Minerals, 1979, 5(2):167-177. doi: 10.1007/BF00307551 [21] BASTIDE J P.Systématique simplifiée des composés ABX4 (X=O2-, F-) et evolution possible de leurs structures cristallines sous pression[J]. Journal of Solid State Chemistry, 1987, 71(1):115-120. doi: 10.1016/0022-4596(87)90149-6 [22] BARAN E J.Materials belonging to the CrVO4 structure type:preparation, crystal chemistry and physicochemical properties[J]. Journal of Materials Science, 1998, 33(10):2479-2497. doi: 10.1023/A:1004380530309 [23] ERRANDONEA D, MANJON F J.Pressure effects on the structural and electronic properties of ABX4 scintillating crystals[J]. Progress in Materials Science, 2008, 53(4):711-773. doi: 10.1016/j.pmatsci.2008.02.001 [24] CLAVIER N, PODOR R, DACHEUX N.Crystal chemistry of the monazite structure[J]. Journal of the European Ceramic Society, 2011, 31(6):941-976. doi: 10.1016/j.jeurceramsoc.2010.12.019 [25] CRICHTON W A, PARISE J B, ANTAO S M, et al.Evidence for monazite-, barite-, and AgMnO4 (distorted barite)-type structures of CaSO4 at high pressure and temperature[J]. American Mineralogist, 2005, 90(1):22-27. doi: 10.2138/am.2005.1654 [26] FUJⅡ T, OHFUJI H, INOUE T.Phase relation of CaSO4 at high pressure and temperature up to 90 GPa and 2300 K[J]. Physics and Chemistry of Minerals, 2016, 43(5):353-361. doi: 10.1007/s00269-016-0799-4 [27] BOONSTRA E G.The crystal structure of silver permanganate[J]. Acta Crystallographica Section B:Structural Crystallography and Crystal Chemistry, 1968, 24(8):1053-1062. doi: 10.1107/S0567740868003699 [28] PRAVICA M, WANG Y, SNEED D, et al.High pressure studies of potassium perchlorate[J]. Chemical Physics Letters, 2016, 660:37-42. doi: 10.1016/j.cplett.2016.07.060 [29] MAO H K, BELL P M, SHANER J W, et al.Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar[J]. Journal of Applied Physics, 1978, 49(6):3276-3283. doi: 10.1063/1.325277 [30] LUTZ H D, BECKER R A, KRUSKA B G, et al.Raman-, IR-und FIR-messungen an wasserfreiem natriumperchlorat NaClO4 im temperaturbereich zwischen 90 und 600 K[J]. Spectrochimica Acta Part A:Molecular Spectroscopy, 1979, 35(7):797-806. doi: 10.1016/0584-8539(79)80037-9 [31] TOUPRY-KRAUZMAN N, POULET H.Temperature dependence of the Raman spectra of NaClO4 in relation to the 581 K phase transition[J]. Journal of Raman Spectroscopy, 1978, 7(1):1-6. doi: 10.1002/jrs.v7:1 [32] MILLER A G, MACKLIN J W.Vibrational spectroscopic studies of sodium perchlorate contact ion pair formation in aqueous solution[J]. The Journal of Physical Chemistry, 1985, 89(7):1193-1201. doi: 10.1021/j100253a028