Influence of Metal Interlayer on Detonation Wave-Shape and Driving Characteristics of Designated Inner/Outer Composite Charge
-
摘要: 根据同轴双元组合装药的实际应用工况,制备了两种组分及尺寸均相同的装药试样,其中一种试样的内、外层装药间设有薄壁铝隔层。采用脉冲X射线摄影法观测了铝隔层在装药爆轰过程中的膨胀轨迹,并通过高速扫描法及圆筒试验分别对比了两种装药爆轰波形及驱动性能的差异。结果表明:由于铝的冲击阻抗与炸药爆轰阻抗较为接近,因此冲击波穿越铝隔层时未产生较强的反射效应,从而未明显改变组合装药的爆轰波形;而在爆轰产物的膨胀过程中,当其相对比容小于3.0时,铝隔层可将内、外层装药的爆轰产物有效隔离,但并未降低整体装药的驱动性能,两种试样的圆筒比动能之比逐步趋近于有效装药的质量比。Abstract: Two charge samples of same composite and shape, but one with and the other without an aluminum interlayer, were prepared following the designated inner/outer composite charge. The expansion process of the aluminum interlayer was determined by X-ray technology, and the difference in the driving capability between the two charges were compared using the high speed scanning and the cylinder test. The results show that the detonation wave does not change obviously due to the similar impedance. The detonation products of the inner and outer charges can be divided by the interlayer when the relative specific volume is below 3.0. However, the driving ability is not affected and the ratio of the specific kinetic energy of the two charges is gradually close to the ratio of the two effective charging masses.
-
Key words:
- composite charge /
- metal interlayer /
- detonation wave-shape /
- cylinder test /
- driving capability /
- X-ray photography
-
表 1 炸药配方及参数
Table 1. Formulation and parameters of explosives
Explosive Mass fraction ρ/(g·cm–3) DCJ/(km·s–1) Q/(kJ·g–1) DOL 30∶60∶5∶5 (DNTF∶HMX∶Al∶binder) 1.84 8.65 6.56 DRLU 15∶35∶20∶30 (DNAN∶RDX∶AP∶Al) 1.88 6.84 8.19 表 2 圆筒壁膨胀位移曲线拟合参数
Table 2. Curve-fitting parameters of the expansion displacement of cylinder wall
Sample D*/(km·s–1) a1/(km·s–1) b1/μs–1 a2/(km·s–1) b2/μs–1 t0/μs A 8.610 1.211 04 0.110 96 0.506 19 0.382 02 1.628 99 B 8.624 1.119 78 0.111 27 0.570 49 0.421 29 1.441 05 -
[1] NOUGUEZ B. Dual formulation warheads: a mature technology [C]//Processing of Insensitive Munitions Technology Seminar. Williamsburg, 1996. [2] 彭翠枝, 范夕萍, 任晓雪, 等. 国外火炸药技术发展新动向分析 [J]. 火炸药学报, 2013, 36(3): 1–5 doi: 10.3969/j.issn.1007-7812.2013.03.001PENG C Z, FAN X P, REN X X, et al. Analysis on recent trends of foreign propellants and explosives technology development [J]. Chinese Journal of Explosives & Propellants, 2013, 36(3): 1–5 doi: 10.3969/j.issn.1007-7812.2013.03.001 [3] HELD M. Detonation behaviour of adjacent high explosive charges with different detonation velocities [C]//13th Symposium (International) on Detonation, 2006. [4] 沈飞, 王辉, 罗一鸣. DNTF基同轴双元装药的爆轰波形及驱动性能 [J]. 含能材料, 2018, 26(7): 614–619SHEN F, WANG H, LUO Y M. Detonation wave-shape and driving performance of coaxial binary charge of DNTF-based aluminized explosives [J]. Chinese Journal of Energetic Materials, 2018, 26(7): 614–619 [5] 周涛, 程淑杰, 王辉, 等. DNTF基含铝炸药复合装药的驱动特性 [J]. 火炸药学报, 2015, 38(5): 46–50ZHOU T, CHENG S J, WANG H, et al. Research on driving characteristic for compound charge of DNTF-based aluminized explosive [J]. Chinese Journal of Explosives & Propellants, 2015, 38(5): 46–50 [6] ARTHUR S, JOHN C. Blast and fragmentation enhancing explosive: US 5996501 [P]. 1999-12-07. [7] ASLAM T D, BDZIL J B, STEWART D S. Level set methods applied to modeling detonation shock dynamics [J]. Journal of Computational Physics, 1996, 126(2): 390–409. doi: 10.1006/jcph.1996.0145 [8] 尹俊婷, 蔚红建, 栗宝华, 等. 金属加速炸药/高爆热炸药复合装药爆炸特性研究 [J]. 火工品, 2015(3): 33–37 doi: 10.3969/j.issn.1003-1480.2015.03.010YIN J T, YU H J, LI B H, et al. Explosion characteristic of metal accelerating explosive/high detonation heat explosive composite charge [J]. Initiators & Pyrotechnics, 2015(3): 33–37 doi: 10.3969/j.issn.1003-1480.2015.03.010 [9] 牛余雷, 王晓峰, 余然. 双元复合炸药装药水下爆炸能量输出特性 [J]. 含能材料, 2009, 17(4): 415–419 doi: 10.3969/j.issn.1006-9941.2009.04.010NIU Y L, WANG X F, YU R. Characteristic of energy output of underwater explosion for dual explosive charge [J]. Chinese Journal of Energetic Materials, 2009, 17(4): 415–419 doi: 10.3969/j.issn.1006-9941.2009.04.010 [10] 周涛, 沈飞, 王辉. 预制破片与轻质壳体阻抗匹配对破片初速及完整性的影响 [J]. 高压物理学报, 2018, 32(4): 045104 doi: 10.11858/gywlxb.20170602ZHOU T, SHEN F, WANG H. Influence of impedance matching between prefabricated fragments and light shell on initial velocity and completeness of fragments [J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 045104 doi: 10.11858/gywlxb.20170602 [11] CHAN S K. Reaction delay of aluminum in condensed explosives [J]. Propellants, Explosives, Pyrotechnics, 2014, 39(6): 897–903. doi: 10.1002/prep.201400093 [12] 炸药圆筒试验光学扫描和激光干涉联合测试方法: GJB 8381-2015 [S]// 中华人民共和国国家军用标准, 2015. [13] LINDSAY C M, BUTLER G C, RUMCHIK C G, et al. Increasing the utility of the copper cylinder expansion test [J]. Propellants, Explosives, Pyrotechnics, 2010, 35(5): 433–439. doi: 10.1002/prep.201000072 [14] 沈飞, 王辉, 袁建飞, 等. 铝含量对RDX基含铝炸药驱动能力的影响 [J]. 火炸药学报, 2013, 36(3): 50–53 doi: 10.3969/j.issn.1007-7812.2013.03.012SHEN F, WANG H, YUAN J F, et al. Influence of Al content on the driving ability of RDX-based aluminized explosives [J]. Chinese Journal of Explosives and Propellants, 2013, 36(3): 50–53 doi: 10.3969/j.issn.1007-7812.2013.03.012 [15] MARK S, SCOTT I J. Dynamics of high sound-speed metal confiners driven by non-ideal high-explosive detonation [J]. Combustion and Flames, 2015, 162: 1857–1867. doi: 10.1016/j.combustflame.2014.12.007