冲击载荷作用下岩体拉-压损伤破坏的边坡抛掷爆破模拟

梁瑞 周文海 余建平 李珍宝 杜超飞 王敦繁

梁瑞, 周文海, 余建平, 李珍宝, 杜超飞, 王敦繁. 冲击载荷作用下岩体拉-压损伤破坏的边坡抛掷爆破模拟[J]. 高压物理学报, 2019, 33(1): 014102. doi: 10.11858/gywlxb.20180535
引用本文: 梁瑞, 周文海, 余建平, 李珍宝, 杜超飞, 王敦繁. 冲击载荷作用下岩体拉-压损伤破坏的边坡抛掷爆破模拟[J]. 高压物理学报, 2019, 33(1): 014102. doi: 10.11858/gywlxb.20180535
LIANG Rui, ZHOU Wenhai, YU Jianping, LI Zhenbao, DU Chaofei, WANG Dunfan. Numerical Simulation of Rock Tension-Compression Fracture Caused by Impact Load during Slope Casting Blast[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 014102. doi: 10.11858/gywlxb.20180535
Citation: LIANG Rui, ZHOU Wenhai, YU Jianping, LI Zhenbao, DU Chaofei, WANG Dunfan. Numerical Simulation of Rock Tension-Compression Fracture Caused by Impact Load during Slope Casting Blast[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 014102. doi: 10.11858/gywlxb.20180535

冲击载荷作用下岩体拉-压损伤破坏的边坡抛掷爆破模拟

doi: 10.11858/gywlxb.20180535
基金项目: 国家自然科学基金(51566010,51076061);甘肃省自然科学基金(B061709)
详细信息
    作者简介:

    梁 瑞(1968-),男,博士,教授,主要从事安全工程与工程爆破研究. E-mail: liangr@lut.cn

    通讯作者:

    周文海(1989-),男,硕士,助教,主要从事安全工程与工程爆破研究. E-mail: 18394499554@139.com

  • 中图分类号: O347.1; TU457

Numerical Simulation of Rock Tension-Compression Fracture Caused by Impact Load during Slope Casting Blast

  • 摘要: 为了获得边坡台阶爆破时岩体在冲击载荷作用下破碎和抛掷过程中各物理参量的变化规律,将构建的岩体动态拉-压损伤本构关系嵌入模拟软件进行数值分析。结果表明:振动波三轴合成速率曲线与质点振动位移曲线的变化趋势所对应的时间节点和步长基本吻合,可作为降振减灾的判定指标;岩体最早于0.6 ms左右从坡脚位置产生裂纹,直至12.5 ms左右裂纹裂隙完成扩展,所形成的炮孔粉碎区半径约28 cm;抛掷块状分离现象从炮孔药包的中间部位开始,最大抛掷速度集中于该部位至边坡自由面之间的垂直区域内,边坡自由面抛掷速度小于炮孔周围岩块抛掷速度,导致抛掷过程中形成二次挤压破碎现象;破碎大块主要来源于边坡坡脚、炸药与堵塞物接触面两侧围岩以及台阶顶部自由面处,大块块体直径分布于1.6~2.7 m范围。

     

  • 图  损伤模型嵌入流程

    Figure  1.  Flowchart for damage model

    图  台阶平面模型

    Figure  2.  Model of the bench plane

    图  三轴合成速率-时间云图

    Figure  3.  Nephograms of synthetic velocity

    图  合成速度-时间曲线

    Figure  4.  Resultant velocity vs. time

    图  振动位移-时间曲线

    Figure  5.  Vibration displacement vs. time

    图  合成加速度-时间曲线

    Figure  6.  Resultant acceleration vs. time

    图  不同时间裂纹裂隙扩展形态分布

    Figure  7.  Variety of crack development of rock at different time

    图  边坡压力-时间曲线

    Figure  8.  Slope pressure vs. time

    图  起爆后不同时刻岩体的抛掷形态

    Figure  9.  Variety of damage and deformation of rock at different time

    图  10  大块分布形态

    Figure  10.  Distribution of rock blocks

    表  1  岩石主要物理力学参数

    Table  1.   Physical and mechanical parameters of rock

    $\rho $/(g·cm–3) E/GPa $\nu$ ${\sigma _0}$/MPa $\beta $ G/GPa K/GPa ${K_{{\rm{IC}}}}$/(105 N·m-3/2)
    2.7 18.23 0.23 102 1.0 7.41 11.25 5.32
    下载: 导出CSV

    表  2  炸药主要参数

    Table  2.   Parameters of explosive

    $\rho $/(g∙cm-3) p/GPa A/GPa B/GPa ${R_1}$ ${R_2}$ $\omega $ E0/GPa ${V_0}$
    1.2 27 52.1 0.182 4.2 0.9 1.1 4.192 1.0
    下载: 导出CSV
  • [1] BUDIANSKY B, O'CONNELL R J. Elastic moduli of a cracked solid [J]. International Journal of Solids and Structures, 1976, 12(2): 81–97. doi: 10.1016/0020-7683(76)90044-5
    [2] 朱传云, 戴晨, 姜清辉. DDA方法在台阶爆破仿真模拟中的应用 [J]. 岩石力学与工程学报, 2002, 21(Suppl 2): 2461–2464

    ZHU C Y, DAI C, JIANG Q H. Numerical simulation of bench blasting by discontinuous deformation analysis method [J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(Suppl 2): 2461–2464
    [3] MUNJIZA A. The combined finite-discrete element method [M]. London: John Wiley & Sons Ltd, 2004: 29-32.
    [4] 黄永辉, 刘殿书, 李胜林, 等. 高台阶抛掷爆破速度规律的数值模拟 [J]. 爆炸与冲击, 2014, 34(4): 495–500 doi: 10.11883/1001-1455(2014)04-0495-06

    HUANG Y H, LIU D S, LI S L, et al. Numerical simulation on pin-point blasting of sloping surface [J]. Explosion and Shock Waves, 2014, 34(4): 495–500 doi: 10.11883/1001-1455(2014)04-0495-06
    [5] TAYLOR L M, CHEN E P, KUSZMAUL J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(3): 301–320. doi: 10.1016/0045-7825(86)90057-5
    [6] KIPP M E, GRADY D E. Numerical studies of rock fragmentation [M]. Albuquerque: Sandia National Laboratories, 1978.
    [7] Livermore Software Technology Corporation. LS-DYNA keyword user's manual [M]. California: Livermore Software Technology Corporation, 2003.
    [8] MA G W, AN X M. Numerical simulation of blasting-induced rock fractures [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(6): 966–975. doi: 10.1016/j.ijrmms.2007.12.002
    [9] 王肖钧, 刘文韬, 张刚明, 等. 爆炸载荷下钢板层裂的二维数值计算 [J]. 爆炸与冲击, 1999, 19(2): 97–102 doi: 10.3321/j.issn:1001-1455.1999.02.001

    WANG X J, LIU W T, ZHANG G M, et al. 2D numerical simulation of spallation in a steel plate due to explosive loading [J]. Explosion and Shock Waves, 1999, 19(2): 97–102 doi: 10.3321/j.issn:1001-1455.1999.02.001
    [10] 赵铮, 陶钢, 杜长星. 爆轰产物JWL状态方程应用研究 [J]. 高压物理学报, 2009, 23(4): 277–282 doi: 10.3969/j.issn.1000-5773.2009.04.007

    ZHAO Z, TAO G, DU C X. Application research on JWL equation of state of detonation products [J]. Chinese Journal of High Pressure Physics, 2009, 23(4): 277–282 doi: 10.3969/j.issn.1000-5773.2009.04.007
    [11] 李夕兵, 古德生, 赖海辉. 冲击载荷下岩石动态应力-应变全图测试中的合理加载波形 [J]. 爆炸与冲击, 1993, 13(2): 125–130

    LI X B, GU D S, LAI H H. On the reasonable loading stress waveforms determined by dynamic stress-strain curves of rocks by SHPB [J]. Explosion and Shock Waves, 1993, 13(2): 125–130
    [12] 吕涛, 石永强, 黄诚, 等. 非线性回归法求解爆破振动速度衰减公式参数 [J]. 岩土力学, 2007, 28(9): 1871–1878 doi: 10.3969/j.issn.1000-7598.2007.09.019

    LÜ T, SHI Y Q, HUANG C, et al. Study on attenuation parameters of blasting vibration by nonlinear regression analysis [J]. Rock and Soil Mechanics, 2007, 28(9): 1871–1878 doi: 10.3969/j.issn.1000-7598.2007.09.019
    [13] 许名标, 彭德红. 某水电站边坡开挖爆破震动动力响应有限元分析 [J]. 岩土工程学报, 2006, 28(6): 770–775 doi: 10.3321/j.issn:1000-4548.2006.06.018

    XU M B, PENG D H. Finite element analysis of dynamic response on blasting vibration in slope excavation of a hydroelectric power station [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(6): 770–775 doi: 10.3321/j.issn:1000-4548.2006.06.018
    [14] 傅洪贤, 赵勇, 谢晋水, 等. 隧道爆破近区爆破振动测试研究 [J]. 岩石力学与工程学报, 2011, 30(2): 335–340

    FU H X, ZHAO Y, XIE J S, et al. Study of blasting vibration test of area near tunnel blasting source [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(2): 335–340
    [15] 楼晓明, 周文海, 简文彬, 等. 微差爆破振动波速度峰值-位移分布特征的延时控制 [J]. 爆炸与冲击, 2016, 36(6): 839–846 doi: 10.11883/1001-1455(2016)06-0839-08

    LOU X M, ZHOU W H, JIAN W B, et al. Control of delay time characterized by distribution of peak velocity-displacement vibration of millisecond blasting [J]. Explosion and Shock Waves, 2016, 36(6): 839–846 doi: 10.11883/1001-1455(2016)06-0839-08
    [16] 冷振东, 卢文波, 陈明, 等. 岩石钻孔爆破粉碎区计算模型的改进 [J]. 爆炸与冲击, 2015, 35(1): 101–107 doi: 10.11883/1001-1455(2015)01-0101-07

    LENG Z D, LU W B, CHEN M, et al. Improved calculation model for the size of crushed zone around blasthole [J]. Explosion and Shock Waves, 2015, 35(1): 101–107 doi: 10.11883/1001-1455(2015)01-0101-07
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  8192
  • HTML全文浏览量:  2967
  • PDF下载量:  37
出版历程
  • 收稿日期:  2018-04-03
  • 修回日期:  2018-04-19
  • 刊出日期:  2019-02-25

目录

    /

    返回文章
    返回