基于Lagrangian分析法的梯度泡沫金属 动态力学行为研究

荣誉 刘志芳 李世强 王志华

荣誉, 刘志芳, 李世强, 王志华. 基于Lagrangian分析法的梯度泡沫金属 动态力学行为研究[J]. 高压物理学报, 2019, 33(1): 014104. doi: 10.11858/gywlxb.20180534
引用本文: 荣誉, 刘志芳, 李世强, 王志华. 基于Lagrangian分析法的梯度泡沫金属 动态力学行为研究[J]. 高压物理学报, 2019, 33(1): 014104. doi: 10.11858/gywlxb.20180534
RONG Yu, LIU Zhifang, LI Shiqiang, WANG Zhihua. Dynamic Mechanical Behavior of Graded Metallic Foams Based on Lagrangian Analysis Method[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 014104. doi: 10.11858/gywlxb.20180534
Citation: RONG Yu, LIU Zhifang, LI Shiqiang, WANG Zhihua. Dynamic Mechanical Behavior of Graded Metallic Foams Based on Lagrangian Analysis Method[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 014104. doi: 10.11858/gywlxb.20180534

基于Lagrangian分析法的梯度泡沫金属 动态力学行为研究

doi: 10.11858/gywlxb.20180534
基金项目: 国家自然科学基金(11572214,11772216,11602161)
详细信息
    作者简介:

    荣 誉(1993-),男,硕士研究生,主要从事冲击动力学研究. E-mail: rongyu230@qq.com

    通讯作者:

    王志华(1977-),男,博士,教授,主要从事冲击动力学研究. E-mail: wangzh@tyut.edu.cn

  • 中图分类号: O347.4; O521.2

Dynamic Mechanical Behavior of Graded Metallic Foams Based on Lagrangian Analysis Method

  • 摘要: 采用Lagrangian分析法,对梯度泡沫金属在高速冲击下的变形机理和应力响应进行研究。基于3D-Voronoi技术,构建了5种不同密度梯度的泡沫金属细观有限元模型,并进行了高速冲击下的Taylor数值实验,得到不同密度梯度泡沫金属的质点速度分布规律。采用Lagrangian分析法并结合数值实验结果,研究了高速冲击下密度梯度参数对泡沫金属的局部应变分布、应力分布以及冲击波传播与衰减规律的影响。结果表明:负密度梯度泡沫金属比正密度梯度泡沫金属具有更强的抵抗变形能力,且密度梯度参数越小,变形程度越小;负密度梯度泡沫金属的局部压实应力呈线性减小,最大局部压实应力随着密度梯度参数的减小而增大,在冲击端附近可以承受更大的载荷;正密度梯度泡沫金属的局部压实应力分布呈平台状,其最大局部压实应力小于负密度梯度泡沫金属。

     

  • 图  梯度泡沫示意图

    Figure  1.  Schematic diagrams of graded foam

    图  Taylor数值实验(a)以及理论和实际密度分布(b)

    Figure  2.  Virtual Taylor impact test scenario (a) and theoretical and practical density distributions (b)

    图  γ=–0.8的泡沫金属在Taylor撞击过程中的变形

    Figure  3.  Deformation of metallic foams with γ=–0.8 in the virtual Taylor impact test

    图  质点速度时程曲线(a)和X=40 mm处的速度时程曲线(b)

    Figure  4.  Time histories of particle velocity (a) and velocity at X=40 mm (b)

    图  冲击波速时程曲线

    Figure  5.  Time histories of shock-wave velocity

    图  局部动态应变时程曲线(a)和X=40 mm的动态应变时程曲线(b)

    Figure  6.  Local dynamic strain-time curves (a) and time histories of dynamic strain at X=40 mm (b)

    图  局部压实应变分布

    Figure  7.  Local locking strain profiles

    图  局部动态应力时程曲线((a)~(c))和X=40 mm处的动态应力时程曲线(d)

    Figure  8.  Local dynamic stress-time curves ((a)–(c)) and time histories of dynamic stress atX=40 mm (d)

    图  局部压实应力分布

    Figure  9.  Local densification stress profiles

    表  1  局部最大压实应变、压实应变、最大局部压实应力及其位置

    Table  1.   Maximum local locking strain, locking strain, and local maximum densification stress and its location

    γ Maximum local locking strain Locking strain Maximum local densification stress
    Value/MPa Lagrangian location/mm
    –0.8 0.88 0.68 47.44 58
    –0.4 0.91 0.70 39.72 56
    0 0.92 0.72 34.77 58
    0.4 0.93 0.74 30.08 35
    0.8 0.96 0.76 30.75 37
    下载: 导出CSV
  • [1] WANG S, DING Y, WANG C, et al. Dynamic material parameters of closed-cell foams under high-velocity impact [J]. International Journal of Impact Engineering, 2017, 99: 111–121. doi: 10.1016/j.ijimpeng.2016.09.013
    [2] WANG P, WANG X, ZHENG Z, et al. Stress distribution in graded cellular materials under dynamic compression [J]. Latin American Journal of Solids and Structures, 2017, 14(7): 1251–1272. doi: 10.1590/1679-78253428
    [3] 王礼立. 应力波基础 [M]. 北京: 国防工业出版社, 2005.
    [4] DESHPANDE V S, FLECK N A. High strain rate compressive behaviour of aluminium alloy foams [J]. International Journal of Impact Engineering, 2000, 24(3): 277–298. doi: 10.1016/S0734-743X(99)00153-0
    [5] KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading [J]. Proceedings of the Physical Society Section B, 1949, 62(11): 676. doi: 10.1088/0370-1301/62/11/302
    [6] FOWLES R. Conservation relations for spherical and cylindrical stress waves [J]. Journal of Applied Physics, 1970, 41(6): 2740–2741. doi: 10.1063/1.1659298
    [7] GRADY D E. Experimental analysis of spherical wave propagation [J]. Journal of Geophysical Research, 1973, 78(8): 1299–1307. doi: 10.1029/JB078i008p01299
    [8] SEAMAN L. Lagrangian analysis for multiple stress or velocity gages in attenuating waves [J]. Journal of Applied Physics, 1974, 45(10): 4303–4314. doi: 10.1063/1.1663050
    [9] GUPTA Y M. High strain-rate shear deformation of a polyurethane elastomer subjected to impact loading [J]. Polymer Engineering & Science, 1984, 24(11): 851–861.
    [10] FOREST C A, WACKERLE J, DICK J J, et al. Lagrangian analysis of MIV (Magnetic Impulse-Velocity) gauge experiments on PBX 9502 using the mass-displacement moment function: LA-UR-89-2898 [R]. Los Alamos: Los Alamos National Lab, 1989.
    [11] WANG L, ZHU J, LAI H. A new method combining Lagrangian analysis with Hopkinson pressure bar technique [J]. Strain, 2011, 47(2): 173–182. doi: 10.1111/str.2011.47.issue-2
    [12] 朱珏. 混凝土类材料冲击本构特性的SHPB技术及Lagrange反解法的研究 [D]. 合肥: 中国科学技术大学, 2006.
    [13] WANG L, DING Y, YANG L. Experimental investigation on dynamic constitutive behavior of aluminum foams by new inverse methods from wave propagation measurements [J]. International Journal of Impact Engineering, 2013, 62: 48–59. doi: 10.1016/j.ijimpeng.2013.06.002
    [14] DING Y, WANG S, ZHENG Z, et al. Dynamic crushing of cellular materials: a unique dynamic stress–strain state curve [J]. Mechanics of Materials, 2016, 100: 219–231. doi: 10.1016/j.mechmat.2016.07.001
    [15] 张建军. 冲击载荷下梯度多孔金属力学行为研究 [D]. 太原: 太原理工大学, 2016.
    [16] ZHENG Z, WANG C, YU J, et al. Dynamic stress–strain states for metal foams using a 3D cellular model [J]. Journal of the Mechanics and Physics of Solids, 2014, 72: 93–114. doi: 10.1016/j.jmps.2014.07.013
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  6957
  • HTML全文浏览量:  3115
  • PDF下载量:  40
出版历程
  • 收稿日期:  2018-04-03
  • 修回日期:  2018-05-29

目录

    /

    返回文章
    返回