球形孔开孔泡沫铝的力学特性及准静态压缩变形机制

王永欢 徐鹏 范志强 王壮壮

王永欢, 徐鹏, 范志强, 王壮壮. 球形孔开孔泡沫铝的力学特性及准静态压缩变形机制[J]. 高压物理学报, 2019, 33(1): 014201. doi: 10.11858/gywlxb.20180532
引用本文: 王永欢, 徐鹏, 范志强, 王壮壮. 球形孔开孔泡沫铝的力学特性及准静态压缩变形机制[J]. 高压物理学报, 2019, 33(1): 014201. doi: 10.11858/gywlxb.20180532
WANG Yonghuan, XU Peng, FAN Zhiqiang, WANG Zhuangzhuang. Mechanical Characteristics and Quasi-Static Compression Deformation Mechanism of Open-Cell Aluminum Foam with Spherical Cells[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 014201. doi: 10.11858/gywlxb.20180532
Citation: WANG Yonghuan, XU Peng, FAN Zhiqiang, WANG Zhuangzhuang. Mechanical Characteristics and Quasi-Static Compression Deformation Mechanism of Open-Cell Aluminum Foam with Spherical Cells[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 014201. doi: 10.11858/gywlxb.20180532

球形孔开孔泡沫铝的力学特性及准静态压缩变形机制

doi: 10.11858/gywlxb.20180532
基金项目: 国家自然科学基金(11602233);山西省青年基金(201701D221018)
详细信息
    作者简介:

    王永欢(1994-),女,硕士,多孔材料力学性能与行为研究. E-mail: 1076348032@qq.com

    通讯作者:

    徐 鹏(1969-),男,博士,教授,主要从事侵彻、爆炸过程测试及结构力学行为的计算机模拟研究. E-mail:ncitlxpx@nuc.edu.cn

  • 中图分类号: O347; TB34

Mechanical Characteristics and Quasi-Static Compression Deformation Mechanism of Open-Cell Aluminum Foam with Spherical Cells

More Information
    Corresponding author: 徐 鹏(1969-),男,博士,教授,主要从事侵彻、爆炸过程测试及结构力学行为的计算机模拟研究.E-mail:ncitlxpx@nuc.edu.cn
  • 摘要: 对胞孔形态和尺寸较为一致的球形孔泡沫铝开展静-动态压缩实验,利用数字图像相关法研究了泡沫铝在准静态压缩过程中的宏观和介观变形机理。结果表明:球形孔泡沫具有明显的应变率效应,随着应变率的增加,平台应力及屈服强度增加,吸能效率也有所提高。由于胞元壁厚不均匀和孔壁缺陷的随机分布,泡沫铝在压缩过程中会出现多条局部变形带,单个胞孔表面在孔壁缺陷处也会出现应变集中带。胞元孔的变形模式主要有3种,轴向压缩、剪切、扭转加剪切复合变形,且整体变形带处的孔壁破坏模式以剪切变形为主,孔壁的变形模式又与孔壁自身厚度以及加载方向有关。

     

  • 图  三维全场应变测量系统

    Figure  1.  Three dimensional full-field strain measurement system

    图  泡沫铝试样及喷散斑后试样

    Figure  2.  Foamed aluminum sample and speckle sample

    图  压缩过程泡沫铝表面位移场分布

    Figure  4.  Displacement field distribution of foamed aluminum surface during compression

    图  泡沫铝的压缩应力-工程应变曲线

    Figure  3.  Compressive stress-engineering strain curve of aluminum foam

    图  胞孔的变形模式

    Figure  5.  Deformation mode of cell

    图  单胞孔位置与其孔的侧面应变场

    Figure  6.  Location of the single cell on its surface and lateral strain field map on the side of the celll

    图  单胞压缩过程应变场分布

    Figure  7.  Distribution of strain field on the surface of a single cell during compression

    图  泡沫铝观测面不同位置孔壁

    Figure  8.  Hole wall at different positions on the observation surface of aluminum foam

    图  孔壁各点应变-时间曲线

    Figure  9.  Strain-time curve of each point on the hole wall of foamed aluminum

    图  10  孔壁不同时刻应变场分布

    Figure  10.  Strain field distribution of aluminum foam wall at different time

  • [1] 王展光, 褚旭明, 何德坪, 等. 强度、吸能与韧性兼容的新型球形孔泡沫纯铝 [J]. 东南大学学报(自然科学版), 2007, 37(6): 985–989 doi: 10.3321/j.issn:1001-0505.2007.06.009

    WANG Z G, CHU X M, HE D P, et al. New type of spherical of pores Al foam possessing strength, energy absorption and toughness [J]. Journal of Southeast University (Natural Science Edition), 2007, 37(6): 985–989 doi: 10.3321/j.issn:1001-0505.2007.06.009
    [2] 王怀文, 亢一澜, 谢和平. 数字散斑相关方法与应用研究进展 [J]. 力学进展, 2005, 35(2): 195–203 doi: 10.3321/j.issn:1000-0992.2005.02.006

    WANG H W, KANG Y L, XIE H P. Advance in digital speckle correlation method and its application [J]. Advances in Mechanics, 2005, 35(2): 195–203 doi: 10.3321/j.issn:1000-0992.2005.02.006
    [3] 陈忠, 陈教豆. 基于双目立体视觉与数字散斑图像相关的全场振动测量 [J]. 振动与冲击, 2015(13): 121–126

    CHEN Z, CHEN J D. Full-field vibration measurement based on binocular stereo vision and digital speckle image correlation [J]. Journal of Vibration and Shock, 2015(13): 121–126
    [4] 魏志强, 黄小清, 杨宝, 等. 应用高速摄影机对泡沫铝在SHPB实验过程的变形跟踪与分析 [J]. 实验力学, 2011, 26(2): 117–123

    WEI Z Q, HUANG X Q, YANG B, et al. Tracking of aluminum foam deformation in SHPB experiment by using high-speed camera [J]. Journal of Experimental Mechanics, 2011, 26(2): 117–123
    [5] JUNG A, WOCKER M, CHEN Z, et al. Micro tensile testing of open-cell metal foams—experimental setup, micromechanical properties [J]. Materials & Design, 2015, 88: 1021–1030.
    [6] 房亮, 唐兆琛, 杨福俊, 等. 数字图像相关方法在闭孔泡沫铝压缩试验中的应用 [J]. 实验力学, 2008, 23(2): 162–168

    FANG L, TANG Z C, YANG F J, et al. Compressive test of closed-cell aluminum foam based on digital image correlation method [J]. Journal of Experimental Mechanics, 2008, 23(2): 162–168
    [7] 章超, 徐松林, 王鹏飞. 基于数字图像相关方法对冲击载荷下泡沫铝全场变形过程的测试 [J]. 实验力学, 2013, 28(5): 629–634

    ZHANG C, XU S L, WANG P F. Test of aluminum foam deforming process under impact load based on digital image load based on digital image correlation method [J]. Journal of Experimental Mechanics, 2013, 28(5): 629–634
    [8] KADKHODAPOUR J, RAEISI S. Micro–macro investigation of deformation and failure in closed-cell aluminum foams [J]. Computational Materials Science, 2014, 83(2): 137–148.
    [9] 杨福俊, 唐兆琛, 朱莉, 等. 闭孔泡沫铝特征统计及其变形行为实验研究 [J]. 东南大学学报(自然科学版), 2009, 39(2): 250–254

    YANG F J, TANG Z C, ZHU L, et al. Experimental study on cellular structure statistical analysis and uniaxial deformation behavior of closed-cell aluminum foam [J]. Journal of Southeast University (Natural Science Edition), 2009, 39(2): 250–254
    [10] 李忠献, 张茂轩, 师燕超. 闭孔泡沫铝的动态压缩性能试验研究 [J]. 振动与冲击, 2017, 36(5): 1–6

    LI Z X, ZHANG M X, SHI Y C. Tests for dynamic compressive performance of closed-cell aluminum foams [J]. Journal of Vibration and Shock, 2017, 36(5): 1–6
    [11] 章超. 数字图像相关方法在动态测试中的应用 [D]. 合肥: 中国科学技术大学, 2014: 41-58.

    ZHANG C. Application of digital imaging correlation in dynamic testing [D]. Hefei: University of Science and Technology of China, 2014: 41-58.
    [12] 朱烨飞, 孙雨果. 单轴压缩载荷下闭孔泡沫铝的变形机制 [J]. 复合材料学报, 2017, 34(8): 1810–1816

    ZHU Y F, SUN Y G. Deformation mechanism of closed-cell aluminum foam under uni axial compression [J]. Acta Materiae Compositae Sinica, 2017, 34(8): 1810–1816
    [13] 潘艺, 胡时胜, 蒋家桥, 等. 泡沫铝泡孔动态变形特性研究 [J]. 爆炸与冲击, 2004, 24(5): 407–412 doi: 10.3321/j.issn:1001-1455.2004.05.005

    PAN Y, HU S S, JING J Q, et al. Dynamic deform ability of cell in aluminum foams [J]. Explosion and Shock Waves, 2004, 24(5): 407–412 doi: 10.3321/j.issn:1001-1455.2004.05.005
    [14] MU Y, YAO G, LIANG L, et al. Deformation mechanisms of closed-cell aluminum foam in compression [J]. Scripta Materialia, 2010, 63(6): 629–632. doi: 10.1016/j.scriptamat.2010.05.041
    [15] 杨宝, 汤立群, 刘逸平, 等. 冲击条件下泡沫铝的细观变形特征分析 [J]. 爆炸与冲击, 2012, 32(4): 399–403 doi: 10.3969/j.issn.1001-1455.2012.04.009

    YANG B, TANG L Q, LIU Y P, et al. Meso deformation characteristics analysis of aluminum foam under impact [J]. Explosion and Shock Waves, 2012, 32(4): 399–403 doi: 10.3969/j.issn.1001-1455.2012.04.009
    [16] 陈永涛, 楼志华, 郑钢铁. 开孔和闭孔泡沫铝的力学与吸能特性研究 [J]. 高能量密度物理, 2006(2): 47–49

    CHEN Y T, LOU Z H, ZHENG G T. Study on mechanics and energy absorption characteristics of open and closed cellular aluminum foam [J]. High Energy Density Physics, 2006(2): 47–49
    [17] DESHPANDE V S, FLECK N A. High strain rate compressive behavior of aluminum alloy foams [J]. International Journal of Impact Engineering, 2000, 24(3): 277–298. doi: 10.1016/S0734-743X(99)00153-0
    [18] MUKAI T, KANAHASHI H, MIYOSHI T, et al. Experimental study of energy absorption in a close-celled aluminum foam under dynamic loading [J]. Scripta Materialia, 1999, 40(8): 921–927. doi: 10.1016/S1359-6462(99)00038-X
    [19] 程和法, 黄笑梅, 许玲. 泡沫铝的动态压缩性能和吸能性研究 [J]. 兵器材料科学与工程, 2003, 26(5): 37–43 doi: 10.3969/j.issn.1004-244X.2003.05.009

    CHENG H F, HUANG X M, XU L. Influence of TIG dressing on micro structure and fracture toughness of welding joint [J]. Ordnance Material Science and Engineering, 2003, 26(5): 37–43 doi: 10.3969/j.issn.1004-244X.2003.05.009
    [20] 王志华. 泡沫铝合金动态力学性能及其吸能机理的研究 [D]. 太原: 太原理工大学, 2005: 41-42.

    WANG Z H. Studies on the dynamic mechanical properties and energy absorption of aIum1num alloy foams [D]. Taiyuan: Taiyuan University of Technology, 2005: 41-42.
    [21] WANG P, XU S, LI Z, et al. Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading [J]. Materials Science & Engineering A, 2015, 620: 253–261.
  • 加载中
图(10)
计量
  • 文章访问数:  6564
  • HTML全文浏览量:  3393
  • PDF下载量:  39
出版历程
  • 收稿日期:  2018-03-28
  • 修回日期:  2018-04-09

目录

    /

    返回文章
    返回