Processing math: 100%

孔结构金属装甲抗弹能力的数值模拟

秦庆华 崔天宁 施前 金永喜 张建勋

秦庆华, 崔天宁, 施前, 金永喜, 张建勋. 孔结构金属装甲抗弹能力的数值模拟[J]. 高压物理学报, 2018, 32(5): 055105. doi: 10.11858/gywlxb.20180530
引用本文: 秦庆华, 崔天宁, 施前, 金永喜, 张建勋. 孔结构金属装甲抗弹能力的数值模拟[J]. 高压物理学报, 2018, 32(5): 055105. doi: 10.11858/gywlxb.20180530
LI Yan, CUI Xiaorong, LI Rui, WANG Quan, HU Minghang, SUN Rui, CHEN Yajing. Influence of Inorganic Salts on the Dissolution Temperature of Ammonium Nitrate and the Explosive Performance of Expanded Ammonium Nitrate Explosives[J]. Chinese Journal of High Pressure Physics, 2025, 39(4): 045102. doi: 10.11858/gywlxb.20240914
Citation: QIN Qinghua, CUI Tianning, SHI Qian, JIN Yongxi, ZHANG Jianxun. Numerical Study on Ballistic Resistance of Metal Perforated Armor to Projectile Impact[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 055105. doi: 10.11858/gywlxb.20180530

孔结构金属装甲抗弹能力的数值模拟

doi: 10.11858/gywlxb.20180530
基金项目: 

国家自然科学基金 11572234

国家自然科学基金 11502189

国家自然科学基金 11372235

瞬态冲击技术重点实验室基金 614260601010117

陕西省自然科学基础研究计划 2017JM1020

详细信息
    作者简介:

    秦庆华(1976—), 男, 博士, 副教授, 主要从事冲击动力学研究. E-mail: qhqin@mail.xjtu.edu.cn

    通讯作者:

    张建勋(1984—), 男, 副教授, 主要从事冲击动力学研究. E-mail: jianxunzhang@mail.xjtu.edu.cn

  • 中图分类号: O347;O385

Numerical Study on Ballistic Resistance of Metal Perforated Armor to Projectile Impact

  • 摘要: 采用数值模拟方法研究了高速弹体冲击下孔结构金属装甲的抗弹能力,系统讨论了弹体冲击速度、入射角、弹着点、孔径、孔间距等因素对抗弹能力的影响。结果表明,在弹道极限速度附近,随着弹体冲击速度的增加,弹着点效应逐渐变得不明显;弹体垂直入射不对称弹着点时会出现明显偏转,而倾斜入射时即使在对称弹着点上也会出现明显的偏转现象;当弹体入射角度大于45°时,弹体剩余速度和侵彻深度出现较明显的下降,当入射角度大于65°时,出现弹跳现象。

     

  • 图  弹体冲击孔结构装甲板示意图

    Figure  1.  Perforated plate impacted by projectile

    图  孔结构尺寸及5个典型弹着点

    Figure  2.  Hole size and 5 typical hitting positions

    图  弹体侵彻孔结构装甲板后靶板的失效模式

    Figure  3.  Failure modes of perforated plates after penetration

    图  计算结果与实验结果[6]对比

    Figure  4.  Comparison of numerical simulations and experimental results[6]

    图  不同弹着点的弹体速度时程曲线

    Figure  5.  Velocity-time curves of projectiles at different hitting positions

    图  不同弹着点对应的剩余速度随入射速度的变化

    Figure  6.  Residual velocity vs. impact velocity of projectiles at different hitting positions

    图  不同弹着点对应的侵彻深度随入射速度的变化

    Figure  7.  Penetration depth vs. impact velocityof projectiles at different hitting positions

    图  弹体在侵彻弹着点Ⅱ和Ⅴ处的偏转角度

    Figure  8.  Yaw angles of projectiles at hitting positions Ⅱ and Ⅴ

    图  不同孔洞尺寸及弹着点条件下弹体的速度时程曲线

    Figure  9.  Velocity-time curves of projectiles under different hole sizes and hitting positions conditions

    图  10  弹体在不同孔洞尺寸基板上的侵彻深度

    Figure  10.  Penetration depth of basic plates with different hole sizes

    图  11  不同尺寸配置下弹体的偏转角度

    Figure  11.  Yaw angles of projectiles under different hole sizes conditions

    图  12  孔结构装甲板抗弹能力随入射角的变化

    Figure  12.  Changes of ballistic resistance of perforated plates with different impact angles

    图  13  弹体以30°和60°侵彻孔结构装甲板后的失效模式

    Figure  13.  Failure modes of targets penetrated by projectile with impact angles of 30° and 60°

    图  14  弹体以45°侵彻弹着点Ⅴ的失效模式

    Figure  14.  Failure modes of target penetrated by projectile at hitting position Ⅴ with impact angles of 45°

    表  1  钨合金和Secure 500高强钢的模型参数[6, 12]

    Table  1.   Material model parameters for tungsten alloy and Secure 500 high hardness steel (HHS)[6, 12]

    Material ρ/(g·cm-3) G/GPa A/MPa B/MPa n C m cp/(J·g-1·K-1) Tm/K T0/K ˙ε0/s-1 D1 D2 D3 c/(m·s-1) D4 D5 S1 S2 S3 γ0
    Tungsten alloy 17.70 160 631 1 258 0.092 0.014 0.94 0.134 1 723 293 1.0 0.0 0.04 0.63 4 029 0.0 0.0 1.237 0.0 0.0 1.54
    Secure 500 HHS 7.85 80 1 200 1 580 0.175 0.004 1.00 0.450 1 800 300 0.000 1 0.1 0.4 -1.3 4 570 0.05 0.0 1.730 0.0 0.0 1.67
    下载: 导出CSV

    表  2  不同孔洞尺寸的孔结构装甲板

    Table  2.   Perforated plates with different hole sizes

    Target Hole size
    d/mm s/mm s/d
    s/d1.25-1 10.80 13.50 1.25
    s/d1.25-2 9.00 11.25 1.25
    s/d1.50-1 9.00 13.50 1.50
    s/d1.50-2 7.00 10.50 1.50
    s/d2.00-1 6.75 13.50 2.00
    s/d2.00-2 9.00 18.00 2.00
    s/d2.50-1 5.40 13.50 2.50
    s/d2.50-2 9.00 22.50 2.50
    下载: 导出CSV
  • [1] BEN-MOSHE D, TARSI Y, ROSENBERG G. An armor assembly for armored vehicles: EP 0209221. 1986.
    [2] CHOCRON S, ANDERSON C E JR, GROSCH D J, et al.Impact of the 7.62 mm APM2 projectile against the edge of a metallic target[J].International Journal of Impact Engineering, 2001, 25(5):423-437. doi: 10.1016/S0734-743X(00)00063-4
    [3] BALOS S, GRABULOV V, SIDJANIN L, et al.Geometry, mechanical properties and mounting of perforated plates for ballistic application[J].Materials & Design, 2010, 31(6):2916-2924. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0218815196
    [4] MISHRA B, RAMAKRISHNA B, JENA P K, et al.Experimental studies on the effect of size and shape of holes on damage and microstructure of high hardness armour steel plates under ballistic impact[J].Materials & Design, 2013, 43:17-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0228757162
    [5] RADISAVLJEVIC I, BALOS S, NIKACEVIC M, et al.Optimization of geometrical characteristics of perforated plates[J].Materials & Design, 2013, 49:81-89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0231243838
    [6] KILIC N, BEDIR S, ERDIK A, et al.Ballistic behavior of high hardness perforated armor plates against 7.62 mm armor piercing projectile[J].Materials & Design, 2014, 63:427-438. http://linkinghub.elsevier.com/retrieve/pii/S0261306914004798
    [7] 胡丽萍, 王智慧, 满红, 等.孔结构间隙复合装甲位置效应研究[J].兵器材料科学与工程, 2010, 33(1):89-90. doi: 10.3969/j.issn.1004-244X.2010.01.025

    HU L P, WANG Z H, MAN H, et al.Study on the spot effect of spaced composite armor with multi-holes[J].Ordnance Material Science and Engineering, 2010, 33(1):89-90. doi: 10.3969/j.issn.1004-244X.2010.01.025
    [8] 肖红亮, 李晓源, 时捷, 等.倾角效应对高强度钢板抗弹性能的影响[J].兵器材料科学与工程, 2011, 34(6):36-40. http://d.old.wanfangdata.com.cn/Periodical/bqclkxygc201106010

    XIAO H L, LI X Y, SHI J, et al.Influence of obliquity effect on the ballistic performance of high strength steel plate[J].Ordnance Material Science and Engineering, 2011, 34(6):36-40. http://d.old.wanfangdata.com.cn/Periodical/bqclkxygc201106010
    [9] 李换芝.倾角穿孔装甲对14.5 mm穿燃弹防护性能的影响[J].科技创新与生产力, 2016(2):90-91. doi: 10.3969/j.issn.1674-9146.2016.02.090

    LI H Z.Influence of oblique perforated armor on the protective performance of the 14.5 mm armor-piercing incendiary[J].Technology Innovation and Productivity, 2016(2):90-91. doi: 10.3969/j.issn.1674-9146.2016.02.090
    [10] 王建波, 闫慧敏, 范秉源, 等.弹着点对多孔钢板抗弹性能影响的数值模拟[J].兵器材料科学与工程, 2011, 33(6):73-75. http://d.old.wanfangdata.com.cn/Periodical/bqclkxygc201006022

    WANG J B, YAN H M, FAN B Y, et al.Numerical simulation analysis about the influence of the hitting position on the ballistic performance of the multi-hole steel plate[J].Ordnance Material Science and Engineering, 2011, 33(6):73-75. http://d.old.wanfangdata.com.cn/Periodical/bqclkxygc201006022
    [11] BØRVIK T, HOPPERSTAD O S, BERSTAD T, et al.A computational model of viscoplasticity and ductile damage for impact and penetration[J].European Journal of Mechanics-A/Solids, 2001, 20(5):685-712. doi: 10.1016/S0997-7538(01)01157-3
    [12] LIDÉN E, MOUSAVI S, HELTE A, et al.Deformation and fracture of a long-rod projectile induced by an oblique moving plate:numerical simulations[J].International Journal of Impact Engineering, 2012, 40:35-45. http://linkinghub.elsevier.com/retrieve/pii/S0734743X11001436
    [13] WARREN T L, POORMON K L.Penetration of 6061-T6511 aluminum targets by ogive-nosed VAR 4340 steel projectiles at oblique angles:experiments and simulations[J].International Journal of Impact Engineering, 2001, 25(10):993-1022. doi: 10.1016/S0734-743X(01)00024-0
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  7893
  • HTML全文浏览量:  3233
  • PDF下载量:  226
出版历程
  • 收稿日期:  2018-03-28
  • 修回日期:  2018-04-12

目录

    /

    返回文章
    返回