Dynamical Fragmentation of Steel Cylinders Subjected to Internal Explosive Detonations
-
摘要: 针对高应变率条件下金属壳体破碎性问题,通过内爆加载试验研究了不同装药条件对圆柱钢壳破碎性能的影响规律,探索了一种新的适用于圆柱壳体的破碎性评估准则。实验结果表明:对于不同的给定材料与炸药组合,壳体的单位长度修正Payman破碎参数Cu和装药与壳体质量比值(C/M值)之间均存在线性关系;端部效应会使壳体破碎参数降低一固定值;壳体壁厚和无装药部分长度等因素对Cu值影响较小,且壳体无装药部分的破碎性较差,只与壳体材料有关。
-
关键词:
- 柱壳 /
- Payman破碎参数 /
- 装药与壳体质量比 /
- 端部效应
Abstract: Explosively driven fragmentation of material is a highly complex phenomenon.In this study, we evaluated the influence of explosive on the intrinsic fragmentation characteristics using hollow cylindrical steel shells, and investigated a new universal assessment criteria for the fragmentation of cylindrical shells.The results show that there is a linear relationship between the normalized Payman fragmentation parameter Cu of the shell and the charge/mass ratio C/M, for various combinations of shell material and explosive.The fragmentation parameter Cu of columnar part decreases by a constant value for the presence of end effect, while other factors including the shell thickness and the length of charge vacancy, have little effect on the fragmentation parameter Cu.The fragmentation performance of shell with no charge is relatively low and is only determined by shell material properties.-
Key words:
- cylinder /
- Payman fragmentation parameter /
- charge/mass ratio /
- end effect
-
表 1 壳体尺寸及装药条件
Table 1. Dimensions of shell and charge
No. D/mm d/mm L/mm C/M 1 30.64 20.64 70 0.18 2 41.99 30.13 70 0.23 3 40.13 30.13 70 0.28 4 50.87 39.52 70 0.33 5 49.52 39.52 70 0.38 表 2 考虑端部效应的壳体尺寸及装药条件
Table 2. Dimensions of shell with end effect and charge
No. D/mm d/mm L/mm t/mm C/M 1 30.64 20.64 60 5 0.18 2 40.13 30.13 60 5 0.28 3 49.52 39.52 60 5 0.38 4 58.84 48.84 60 5 0.48 5 32.11 24.11 60 4 0.28 6 48.16 36.16 60 6 0.28 7 56.19 42.19 60 7 0.28 表 3 考虑无装药部分的壳体尺寸及装药条件
Table 3. Dimensions of shell with charge vacancy and charge
No. D/mm d/mm L/mm L′/mm t/mm C/M 1 30.64 20.64 60 30 5 0.18 40.13 30.13 60 30 5 0.28 49.52 39.52 60 30 5 0.38 58.84 48.84 60 30 5 0.48 2 40.13 30.13 60 10 5 0.28 40.13 30.13 60 20 5 0.28 40.13 30.13 60 30 5 0.28 40.13 30.13 60 40 5 0.28 3 32.11 24.11 60 30 4 0.28 40.13 30.13 60 30 5 0.28 48.16 36.16 60 30 6 0.28 56.19 42.19 60 30 7 0.28 -
[1] ARNOLD W, ROTTENKOLBER E.Fragment mass distribution of metal cased explsoive charges[J].Internatinal Journal of Impacting Engineering, 2008, 35(12):1393-1398. doi: 10.1016/j.ijimpeng.2008.07.049 [2] 沈正祥, 李亚哲, 张宏亮, 等.局部改性弹体低速贯穿金属靶板的破坏形式研究[J].高压物理学报, 2017, 31(2):202-207. doi: 10.11858/gywlxb.2017.02.014SHEN Z X, LI Y Z, ZHANG H L, et al.Experimental studies on failure mode of low speed projectiles by local modification on steel plates[J].Chinese Journal of High Pressure Physics, 2017, 31(2):202-207. doi: 10.11858/gywlxb.2017.02.014 [3] 王志荣, 蒋军成, 徐进.气体爆炸载荷作用下抗爆容器的动力学响应[J].石油化工高等学校学报, 2006, 19(3):76-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syhggdxx200603020WANG Z R, JIANG J C, XU J.Dynamic response of pressure-shock-resistant vessel subjected to gas explosion load[J].Journal of Petrochemical University, 2006, 19(3):76-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syhggdxx200603020 [4] 辛健, 马利, 胡洋, 等.内爆载荷作用下不锈钢圆柱壳的断裂失效分析[J].压力容器, 2013, 30(2):66-72. http://www.cqvip.com/QK/90974X/201302/44898181.htmlXIN J, MA L, HU Y, et al.Fracture analysis of stainless steel tube under internal blasting loading[J].Pressure Vessel Technology, 2013, 30(2):66-72. http://www.cqvip.com/QK/90974X/201302/44898181.html [5] 路胜卓, 王伟, 张博一.大型浮顶式储油罐的爆炸破坏机理实验[J].爆炸与冲击, 2011, 31(2):158-164. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj201102008LU S Z, WANG W, ZHANG B Y.Experimental research on destruction mechanism oflarge-scale floating-roof oil tank under blast loading[J].Explosion and Shock Waves, 2011, 31(2):158-164. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj201102008 [6] 陈福真, 张明广, 王妍, 等.油气储罐区多米诺事故耦合效应风险分析[J].中国安全科学学报, 2017(10):111-116. http://www.cnki.com.cn/Article/CJFDTotal-LDBK201511029.htmCHEN F Z, ZHANG M G, WANG Y, et al.Risk analysis of coupling domino effect in petroliferous tank farm[J].China Safety Science Journal, 2017(10):111-116. http://www.cnki.com.cn/Article/CJFDTotal-LDBK201511029.htm [7] GURNERY R W. The initial velocities of fragments from bombs, shells and grenades: BRL 405[R]. Maryland: Army Ballistic Research Laboratory, 1943. [8] TAYLOR G I. Analysis of the explosion of a long cylindrical bomb detonated at one end[M]//Batchelor G K. The Scientific Papers of Sir Geoffrey Ingram Taylor (Ⅲ). Cambridge: Cambridge University Press, 1963: 277-286. [9] HOGGATT R H, RECHT R F.Fracture behavior of tubular bombs[J].Journal of Applied Physics, 1968, 39(3):1856-1862. doi: 10.1063/1.1656442 [10] MOTT N F.Fragmentation of shell cases[J].Mathematical and Physical Sciences, 1947, 189(1018):300-308. doi: 10.1098/rspa.1947.0042 [11] GRADY D E. Fragmentation of rings and shells[M]. New York: Springer Verlag, 2006. [12] HIROE T, FUJIWARA K, HATA H, et al.Deformation and fragmentation behavior of exploded metal cylinders and the effects of wall materials, configuration, explosive energy and initiated locations[J].International Journal and Impact Engineering, 2008, 35:1578-1586. doi: 10.1016/j.ijimpeng.2008.07.002 [13] TANAPORNRAWEEKIT G, KULSIRIKASEM W.FEM simulation of HE blast-fragmentation warhead and the calculation of lethal range[J].World Academy of Science, Engineering and Technology, 2012, 6(6):411-415. https://www.researchgate.net/publication/300048733_FEM_simulation_of_HE_blast-fragmentation_warhead_and_the_calculation_of_lethal_range [14] KONG X S, WU W G, LI J, et al.A numerical investigation on explosive fragmentation of metal casing using smoothed particle hydrodynamic method[J].Material and Design, 2013, 51:729-741. doi: 10.1016/j.matdes.2013.04.041 [15] 沈正祥, 袁书强, 陈炯, 等.局部淬火金属柱壳破碎性的研究[J].高压物理学报, 2015, 29(4):293-298. doi: 10.11858/gywlxb.2015.04.009SHEN Z X, YUAN S Q, CHEN J, et al.Fragmentation of metal cylindrical shell treated by local quenching[J].Chinese Journal of High Pressure Physics, 2015, 29(4):293-298. doi: 10.11858/gywlxb.2015.04.009 [16] GRADY D E, HIGHTOWER M M. Fracture of a 4140 steel cylinder under high explosive loading: Sand-90-0882C[R]. Sandia National Laboratories, 1990. [17] REID W D, WALSH B E.Dynamic fracture properties of a tungsten, 3.5%Ni, 1.5%Fe alloy under explosive loading conditions[J].Journal de Physique, 1991, 1(C3):597-604. https://core.ac.uk/display/101068945