内爆载荷作用下圆柱钢壳的动态破碎性能

陈虎 沈正祥 王杜 陈定岳 袁书强

陈虎, 沈正祥, 王杜, 陈定岳, 袁书强. 内爆载荷作用下圆柱钢壳的动态破碎性能[J]. 高压物理学报, 2018, 32(5): 054202. doi: 10.11858/gywlxb.20180527
引用本文: 陈虎, 沈正祥, 王杜, 陈定岳, 袁书强. 内爆载荷作用下圆柱钢壳的动态破碎性能[J]. 高压物理学报, 2018, 32(5): 054202. doi: 10.11858/gywlxb.20180527
CHEN Hu, SHEN Zhengxiang, WANG Du, CHEN Dingyue, YUAN Shuqiang. Dynamical Fragmentation of Steel Cylinders Subjected to Internal Explosive Detonations[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 054202. doi: 10.11858/gywlxb.20180527
Citation: CHEN Hu, SHEN Zhengxiang, WANG Du, CHEN Dingyue, YUAN Shuqiang. Dynamical Fragmentation of Steel Cylinders Subjected to Internal Explosive Detonations[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 054202. doi: 10.11858/gywlxb.20180527

内爆载荷作用下圆柱钢壳的动态破碎性能

doi: 10.11858/gywlxb.20180527
基金项目: 

浙江省质量技术基础建设项目 20180119

详细信息
    作者简介:

    陈虎(1979-), 男, 博士, 高级工程师, 主要从事压力容器安全技术研究.E-mail:chenhu@nbtjy.com

    通讯作者:

    沈正祥(1984-), 男, 博士, 副研究员, 主要从事爆炸力学研究.E-mail:shenzx84@163.com

  • 中图分类号: O347;TJ412

Dynamical Fragmentation of Steel Cylinders Subjected to Internal Explosive Detonations

  • 摘要: 针对高应变率条件下金属壳体破碎性问题,通过内爆加载试验研究了不同装药条件对圆柱钢壳破碎性能的影响规律,探索了一种新的适用于圆柱壳体的破碎性评估准则。实验结果表明:对于不同的给定材料与炸药组合,壳体的单位长度修正Payman破碎参数Cu和装药与壳体质量比值(C/M值)之间均存在线性关系;端部效应会使壳体破碎参数降低一固定值;壳体壁厚和无装药部分长度等因素对Cu值影响较小,且壳体无装药部分的破碎性较差,只与壳体材料有关。

     

  • 图  圆柱钢壳结构示意

    Figure  1.  Schematic of cylindrical steel shell

    图  破碎参数C0C/M值的关系

    Figure  2.  Variation of Payman fragmentation parameter C0 with C/M ratio

    图  破碎参数CuC/M比值的关系

    Figure  3.  Variation of normalized Payman fragmentation parameter Cu with C/M ratio

    图  带端部效应的圆柱钢壳结构

    Figure  4.  Schematic of steel shell with end effect

    图  端部效应对壳体破碎参数Cu的影响

    Figure  5.  Influence of end effect on the normalized Payman fragmentation parameter Cu

    图  壁厚对壳体破碎参数Cu的影响

    Figure  6.  Influence of wall thickness on the normalized Payman fragmentation parameter Cu

    图  带无装药部分的圆柱钢壳结构

    Figure  7.  Schematic of steel shell with charge vacancy

    图  壳体破碎参数CuC/M比值的关系

    Figure  8.  Variation of normalized Payman fragmentation parameter Cu with C/M ratio

    图  壳体破碎参数Cu与壁厚的关系

    Figure  9.  Variation of normalized Payman fragmentation parameter Cu with wall thickness

    图  10  壳体破碎参数Cu与无装药部分长度的关系

    Figure  10.  Variation of normalized Payman fragmentation parameter Cu with length of charge vacancy

    表  1  壳体尺寸及装药条件

    Table  1.   Dimensions of shell and charge

    No. D/mm d/mm L/mm C/M
    1 30.64 20.64 70 0.18
    2 41.99 30.13 70 0.23
    3 40.13 30.13 70 0.28
    4 50.87 39.52 70 0.33
    5 49.52 39.52 70 0.38
    下载: 导出CSV

    表  2  考虑端部效应的壳体尺寸及装药条件

    Table  2.   Dimensions of shell with end effect and charge

    No. D/mm d/mm L/mm t/mm C/M
    1 30.64 20.64 60 5 0.18
    2 40.13 30.13 60 5 0.28
    3 49.52 39.52 60 5 0.38
    4 58.84 48.84 60 5 0.48
    5 32.11 24.11 60 4 0.28
    6 48.16 36.16 60 6 0.28
    7 56.19 42.19 60 7 0.28
    下载: 导出CSV

    表  3  考虑无装药部分的壳体尺寸及装药条件

    Table  3.   Dimensions of shell with charge vacancy and charge

    No. D/mm d/mm L/mm L′/mm t/mm C/M
    1 30.64 20.64 60 30 5 0.18
    40.13 30.13 60 30 5 0.28
    49.52 39.52 60 30 5 0.38
    58.84 48.84 60 30 5 0.48
    2 40.13 30.13 60 10 5 0.28
    40.13 30.13 60 20 5 0.28
    40.13 30.13 60 30 5 0.28
    40.13 30.13 60 40 5 0.28
    3 32.11 24.11 60 30 4 0.28
    40.13 30.13 60 30 5 0.28
    48.16 36.16 60 30 6 0.28
    56.19 42.19 60 30 7 0.28
    下载: 导出CSV
  • [1] ARNOLD W, ROTTENKOLBER E.Fragment mass distribution of metal cased explsoive charges[J].Internatinal Journal of Impacting Engineering, 2008, 35(12):1393-1398. doi: 10.1016/j.ijimpeng.2008.07.049
    [2] 沈正祥, 李亚哲, 张宏亮, 等.局部改性弹体低速贯穿金属靶板的破坏形式研究[J].高压物理学报, 2017, 31(2):202-207. doi: 10.11858/gywlxb.2017.02.014

    SHEN Z X, LI Y Z, ZHANG H L, et al.Experimental studies on failure mode of low speed projectiles by local modification on steel plates[J].Chinese Journal of High Pressure Physics, 2017, 31(2):202-207. doi: 10.11858/gywlxb.2017.02.014
    [3] 王志荣, 蒋军成, 徐进.气体爆炸载荷作用下抗爆容器的动力学响应[J].石油化工高等学校学报, 2006, 19(3):76-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syhggdxx200603020

    WANG Z R, JIANG J C, XU J.Dynamic response of pressure-shock-resistant vessel subjected to gas explosion load[J].Journal of Petrochemical University, 2006, 19(3):76-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syhggdxx200603020
    [4] 辛健, 马利, 胡洋, 等.内爆载荷作用下不锈钢圆柱壳的断裂失效分析[J].压力容器, 2013, 30(2):66-72. http://www.cqvip.com/QK/90974X/201302/44898181.html

    XIN J, MA L, HU Y, et al.Fracture analysis of stainless steel tube under internal blasting loading[J].Pressure Vessel Technology, 2013, 30(2):66-72. http://www.cqvip.com/QK/90974X/201302/44898181.html
    [5] 路胜卓, 王伟, 张博一.大型浮顶式储油罐的爆炸破坏机理实验[J].爆炸与冲击, 2011, 31(2):158-164. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj201102008

    LU S Z, WANG W, ZHANG B Y.Experimental research on destruction mechanism oflarge-scale floating-roof oil tank under blast loading[J].Explosion and Shock Waves, 2011, 31(2):158-164. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj201102008
    [6] 陈福真, 张明广, 王妍, 等.油气储罐区多米诺事故耦合效应风险分析[J].中国安全科学学报, 2017(10):111-116. http://www.cnki.com.cn/Article/CJFDTotal-LDBK201511029.htm

    CHEN F Z, ZHANG M G, WANG Y, et al.Risk analysis of coupling domino effect in petroliferous tank farm[J].China Safety Science Journal, 2017(10):111-116. http://www.cnki.com.cn/Article/CJFDTotal-LDBK201511029.htm
    [7] GURNERY R W. The initial velocities of fragments from bombs, shells and grenades: BRL 405[R]. Maryland: Army Ballistic Research Laboratory, 1943.
    [8] TAYLOR G I. Analysis of the explosion of a long cylindrical bomb detonated at one end[M]//Batchelor G K. The Scientific Papers of Sir Geoffrey Ingram Taylor (Ⅲ). Cambridge: Cambridge University Press, 1963: 277-286.
    [9] HOGGATT R H, RECHT R F.Fracture behavior of tubular bombs[J].Journal of Applied Physics, 1968, 39(3):1856-1862. doi: 10.1063/1.1656442
    [10] MOTT N F.Fragmentation of shell cases[J].Mathematical and Physical Sciences, 1947, 189(1018):300-308. doi: 10.1098/rspa.1947.0042
    [11] GRADY D E. Fragmentation of rings and shells[M]. New York: Springer Verlag, 2006.
    [12] HIROE T, FUJIWARA K, HATA H, et al.Deformation and fragmentation behavior of exploded metal cylinders and the effects of wall materials, configuration, explosive energy and initiated locations[J].International Journal and Impact Engineering, 2008, 35:1578-1586. doi: 10.1016/j.ijimpeng.2008.07.002
    [13] TANAPORNRAWEEKIT G, KULSIRIKASEM W.FEM simulation of HE blast-fragmentation warhead and the calculation of lethal range[J].World Academy of Science, Engineering and Technology, 2012, 6(6):411-415. https://www.researchgate.net/publication/300048733_FEM_simulation_of_HE_blast-fragmentation_warhead_and_the_calculation_of_lethal_range
    [14] KONG X S, WU W G, LI J, et al.A numerical investigation on explosive fragmentation of metal casing using smoothed particle hydrodynamic method[J].Material and Design, 2013, 51:729-741. doi: 10.1016/j.matdes.2013.04.041
    [15] 沈正祥, 袁书强, 陈炯, 等.局部淬火金属柱壳破碎性的研究[J].高压物理学报, 2015, 29(4):293-298. doi: 10.11858/gywlxb.2015.04.009

    SHEN Z X, YUAN S Q, CHEN J, et al.Fragmentation of metal cylindrical shell treated by local quenching[J].Chinese Journal of High Pressure Physics, 2015, 29(4):293-298. doi: 10.11858/gywlxb.2015.04.009
    [16] GRADY D E, HIGHTOWER M M. Fracture of a 4140 steel cylinder under high explosive loading: Sand-90-0882C[R]. Sandia National Laboratories, 1990.
    [17] REID W D, WALSH B E.Dynamic fracture properties of a tungsten, 3.5%Ni, 1.5%Fe alloy under explosive loading conditions[J].Journal de Physique, 1991, 1(C3):597-604. https://core.ac.uk/display/101068945
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  6978
  • HTML全文浏览量:  3022
  • PDF下载量:  200
出版历程
  • 收稿日期:  2018-03-15
  • 修回日期:  2018-04-03

目录

    /

    返回文章
    返回