Separation of Two SiO2 Nanoparticles under Ultrasonic Vibration
-
摘要: 在范德华力的作用下,纳米颗粒常常会黏在一起。黏在一起的纳米颗粒的分离提纯是纳米领域亟待解决的难题。研究了超声波作用下受到范德华力的两个SiO2纳米颗粒的分离。假设颗粒处于空气中且是刚性的,给其中一个颗粒施加超声波振动,计算两个颗粒之间的范德华力和距离变化。结果表明,颗粒粒径比、超声波幅值、超声波周期、超声波平均能量密度对颗粒分离产生不同的影响。Abstract: Nanoparticles tend to aggregate due to the van der Waals force, and the separation and purification of these nanoparticles are difficult in nanometer scale.In this study, we focus on the separation of two SiO2 nanoparticles attracted by van der Waals force.Assuming them as being stiffness particles in air and applying ultrasonic vibration to one of them, we analyzed and calculated the interaction and distance between the two SiO2 nanoparticles.It is found that the ratio of diameters, the amplitude, the period and the average energy density of the ultrasonic have different effects on their separation.
-
Key words:
- van der Waals force /
- ultrasonic vibration /
- separation /
- nanoparticle
-
表 1 Lennard-Jones势能参数
Table 1. Parameters of Lennard-Jones interaction potential
Atom type of interaction σ/nm ε/(10-20 J) Si-Si 0.330 4.3766 O-O 0.275 0.1104 表 2 颗粒分离时间随粒径比η的变化关系
Table 2. Relationship of diameter ratio η and separation time of two particles
η Separation time/ps 0.1 843 0.5 249 1 180 5 139 10 94 表 3 颗粒分离时间随振幅H的变化关系
Table 3. Relationship of ultrasound amplitude H and separation time of two particles
H/nm Separation time/ps 0.1 167 0.5 168 1 181 5 164 10 156 表 4 颗粒分离时间随周期T变化关系
Table 4. Relationship of ultrasound period T and separation time of two particles
T/μs Separation time/ps 0.1 99 1 139 10 164 100 168 -
[1] 刘维平, 邱定番, 卢惠民.纳米材料制备方法及应用领域[J].化工矿物与加工, 2003, 32(12):1-5. doi: 10.3969/j.issn.1008-7524.2003.12.001LIU W P, QIU D F, LU H M.Preparation methods of nano-materials and its applications[J].Industrial Minerals & Processing, 2003, 32(12):1-5. doi: 10.3969/j.issn.1008-7524.2003.12.001 [2] 袁文俊, 周勇敏.纳米颗粒团聚的原因及解决措施[J].材料导报, 2008, 22(S3):59-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb2008z3021YUAN W J, ZHOU Y M.Reasons for aggregation of nanoparticles and solutions[J].Materials Review, 2008, 22(S3):59-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb2008z3021 [3] 张璐, 吴晶, 陈慧英.微米及纳米级微粒的分离与操控研究进展[J].内蒙古民族大学学报, 2011, 26(3):262-266. http://www.cqvip.com/QK/97047A/201103/38130386.htmlZHANG L, WU J, CHEN H Y.The research progress of the separation and manipulation technologies for micro/nano-scale particles[J].Journal of Inner Mongolia University for Nationalities, 2011, 26(3):262-266. http://www.cqvip.com/QK/97047A/201103/38130386.html [4] 富玉, 李晓鸥, 李鹤鸣, 等.超声沉降法强化脱除印尼油砂油中机械杂质[J].辽宁石油化工大学学报, 2017, 37(5):17-21. http://www.cqvip.com/QK/98572X/200304/8757544.htmlFU Y, LI X O, LI H M, et al. Enhanced removal of the mechanical impurities in oil-sands-oil from indonesia by ultrasound-sedimentation method[J].Journal of Liaoning Shihua University, 2017, 37(5):17-21. http://www.cqvip.com/QK/98572X/200304/8757544.html [5] 赵亚溥.表面与界面物理力学[M].北京:科学出版社, 2012:40-45.ZHAO Y P.Physical mechanics of surface and interfaces[M].Beijing:Science Press, 2012:40-45. [6] 赵亚溥.纳米与介观力学[M].北京:科学出版社, 2014:256-257.ZHAO Y P.Nano and mesoscopic mechanics[M].Beijing:Science Press, 2014:256-257. [7] ISRAELACHVILI J N.Intermolecular and surface forces[M].3rd Ed.Cambridge, Massachusetts:Academic Press, 2011:215-287. [8] FU S P, PENG Z, YUAN H, et al.Lennard-Jones type pair-potential method for coarse-grained lipid bilayer membrane simulations in LAMMPS[J].Computer Physics Communications, 2017, 210:193-203. doi: 10.1016/j.cpc.2016.09.018 [9] XU J, ZHENG B, LIU Y.Solitary wave in one-dimensional buckyball system at nanoscale[J].Scientific Reports, 2016, 6:21052. doi: 10.1038/srep21052 [10] AHANGARI M G, FEREIDOON A, MASHHADZADEH A H.Interlayer interaction and mechanical properties in multi-layer graphene, boron-nitride, aluminum-nitride and gallium-nitride graphene-like structure:a quantum-mechanical DFT study[J].Superlattices & Microstructures, 2017, 112:30-45. https://www.sciencedirect.com/science/article/pii/S0749603617319572 [11] OVERSTEEGEN S M, LEKKERKERKER H N W.On the accuracy of the Derjaguin approximation for depletion potentials[J].Physica A:Statistical Mechanics & Its Applications, 2004, 341(1):23-39. https://econpapers.repec.org/RePEc:eee:phsmap:v:341:y:2004:i:c:p:23-39 [12] ANDRÉ P, BUSSIÈRE W, ROCHETTE D.Transport coefficients of Ag-SiO2 plasmas[J].Plasma Chemistry & Plasma Processing, 2007, 27(4):381-403. https://www.deepdyve.com/lp/springer-journals/transport-coefficients-of-ag-sio-2-plasmas-welAJfr4wC [13] MUNETOH S, MOTOOKA T, MORIGUCHI K, et al.Interatomic potential for Si-O systems using Tersoff parameterization[J].Computational Materials Science, 2007, 39(2):334-339. doi: 10.1016/j.commatsci.2006.06.010