超声波作用下SiO2纳米颗粒的分离

任超宇 薛鹏程 焦雄 王根伟

任超宇, 薛鹏程, 焦雄, 王根伟. 超声波作用下SiO2纳米颗粒的分离[J]. 高压物理学报, 2018, 32(4): 042401. doi: 10.11858/gywlxb.20180526
引用本文: 任超宇, 薛鹏程, 焦雄, 王根伟. 超声波作用下SiO2纳米颗粒的分离[J]. 高压物理学报, 2018, 32(4): 042401. doi: 10.11858/gywlxb.20180526
REN Chaoyu, XUE Pengcheng, JIAO Xiong, WANG Genwei. Separation of Two SiO2 Nanoparticles under Ultrasonic Vibration[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 042401. doi: 10.11858/gywlxb.20180526
Citation: REN Chaoyu, XUE Pengcheng, JIAO Xiong, WANG Genwei. Separation of Two SiO2 Nanoparticles under Ultrasonic Vibration[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 042401. doi: 10.11858/gywlxb.20180526

超声波作用下SiO2纳米颗粒的分离

doi: 10.11858/gywlxb.20180526
基金项目: 

国家自然科学基金 11772215

详细信息
    作者简介:

    任超宇(1991-), 男, 硕士, 主要从事微纳米力学研究.E-mail:15122346848@163.com

    通讯作者:

    王根伟(1974-), 男, 博士, 硕士生导师, 主要从事纳米结构和纳米复合材料力学研究

  • 中图分类号: O647.4

Separation of Two SiO2 Nanoparticles under Ultrasonic Vibration

  • 摘要: 在范德华力的作用下,纳米颗粒常常会黏在一起。黏在一起的纳米颗粒的分离提纯是纳米领域亟待解决的难题。研究了超声波作用下受到范德华力的两个SiO2纳米颗粒的分离。假设颗粒处于空气中且是刚性的,给其中一个颗粒施加超声波振动,计算两个颗粒之间的范德华力和距离变化。结果表明,颗粒粒径比、超声波幅值、超声波周期、超声波平均能量密度对颗粒分离产生不同的影响。

     

  • 图  几何关系

    Figure  1.  Schematic of geometric relations

    图  SiO2纳米颗粒运动模型

    Figure  2.  Motion model of SiO2 nanoparticles

    图  粒径比η对颗粒分离的影响

    Figure  3.  Influence of diameter ratio η on distance between two particles

    图  超声波振幅H对颗粒分离的影响

    Figure  4.  Influence of ultrasound amplitude H on distance between two particles

    图  周期T对颗粒分离的影响

    Figure  5.  Impact of ultrasound period T on distance between two particles

    图  相同超声波平均能量密度ζ下振幅H及周期T对颗粒分离的影响

    Figure  6.  Impact of ultrasound amplitude and period on distance between two particles with the same average energy density ζ

    表  1  Lennard-Jones势能参数

    Table  1.   Parameters of Lennard-Jones interaction potential

    Atom type of interactionσ/nmε/(10-20 J)
    Si-Si0.3304.3766
    O-O0.2750.1104
    下载: 导出CSV

    表  2  颗粒分离时间随粒径比η的变化关系

    Table  2.   Relationship of diameter ratio η and separation time of two particles

    ηSeparation time/ps
    0.1843
    0.5249
    1180
    5139
    1094
    下载: 导出CSV

    表  3  颗粒分离时间随振幅H的变化关系

    Table  3.   Relationship of ultrasound amplitude H and separation time of two particles

    H/nmSeparation time/ps
    0.1167
    0.5168
    1181
    5164
    10156
    下载: 导出CSV

    表  4  颗粒分离时间随周期T变化关系

    Table  4.   Relationship of ultrasound period T and separation time of two particles

    T/μsSeparation time/ps
    0.199
    1139
    10164
    100168
    下载: 导出CSV
  • [1] 刘维平, 邱定番, 卢惠民.纳米材料制备方法及应用领域[J].化工矿物与加工, 2003, 32(12):1-5. doi: 10.3969/j.issn.1008-7524.2003.12.001

    LIU W P, QIU D F, LU H M.Preparation methods of nano-materials and its applications[J].Industrial Minerals & Processing, 2003, 32(12):1-5. doi: 10.3969/j.issn.1008-7524.2003.12.001
    [2] 袁文俊, 周勇敏.纳米颗粒团聚的原因及解决措施[J].材料导报, 2008, 22(S3):59-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb2008z3021

    YUAN W J, ZHOU Y M.Reasons for aggregation of nanoparticles and solutions[J].Materials Review, 2008, 22(S3):59-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cldb2008z3021
    [3] 张璐, 吴晶, 陈慧英.微米及纳米级微粒的分离与操控研究进展[J].内蒙古民族大学学报, 2011, 26(3):262-266. http://www.cqvip.com/QK/97047A/201103/38130386.html

    ZHANG L, WU J, CHEN H Y.The research progress of the separation and manipulation technologies for micro/nano-scale particles[J].Journal of Inner Mongolia University for Nationalities, 2011, 26(3):262-266. http://www.cqvip.com/QK/97047A/201103/38130386.html
    [4] 富玉, 李晓鸥, 李鹤鸣, 等.超声沉降法强化脱除印尼油砂油中机械杂质[J].辽宁石油化工大学学报, 2017, 37(5):17-21. http://www.cqvip.com/QK/98572X/200304/8757544.html

    FU Y, LI X O, LI H M, et al. Enhanced removal of the mechanical impurities in oil-sands-oil from indonesia by ultrasound-sedimentation method[J].Journal of Liaoning Shihua University, 2017, 37(5):17-21. http://www.cqvip.com/QK/98572X/200304/8757544.html
    [5] 赵亚溥.表面与界面物理力学[M].北京:科学出版社, 2012:40-45.

    ZHAO Y P.Physical mechanics of surface and interfaces[M].Beijing:Science Press, 2012:40-45.
    [6] 赵亚溥.纳米与介观力学[M].北京:科学出版社, 2014:256-257.

    ZHAO Y P.Nano and mesoscopic mechanics[M].Beijing:Science Press, 2014:256-257.
    [7] ISRAELACHVILI J N.Intermolecular and surface forces[M].3rd Ed.Cambridge, Massachusetts:Academic Press, 2011:215-287.
    [8] FU S P, PENG Z, YUAN H, et al.Lennard-Jones type pair-potential method for coarse-grained lipid bilayer membrane simulations in LAMMPS[J].Computer Physics Communications, 2017, 210:193-203. doi: 10.1016/j.cpc.2016.09.018
    [9] XU J, ZHENG B, LIU Y.Solitary wave in one-dimensional buckyball system at nanoscale[J].Scientific Reports, 2016, 6:21052. doi: 10.1038/srep21052
    [10] AHANGARI M G, FEREIDOON A, MASHHADZADEH A H.Interlayer interaction and mechanical properties in multi-layer graphene, boron-nitride, aluminum-nitride and gallium-nitride graphene-like structure:a quantum-mechanical DFT study[J].Superlattices & Microstructures, 2017, 112:30-45. https://www.sciencedirect.com/science/article/pii/S0749603617319572
    [11] OVERSTEEGEN S M, LEKKERKERKER H N W.On the accuracy of the Derjaguin approximation for depletion potentials[J].Physica A:Statistical Mechanics & Its Applications, 2004, 341(1):23-39. https://econpapers.repec.org/RePEc:eee:phsmap:v:341:y:2004:i:c:p:23-39
    [12] ANDRÉ P, BUSSIÈRE W, ROCHETTE D.Transport coefficients of Ag-SiO2 plasmas[J].Plasma Chemistry & Plasma Processing, 2007, 27(4):381-403. https://www.deepdyve.com/lp/springer-journals/transport-coefficients-of-ag-sio-2-plasmas-welAJfr4wC
    [13] MUNETOH S, MOTOOKA T, MORIGUCHI K, et al.Interatomic potential for Si-O systems using Tersoff parameterization[J].Computational Materials Science, 2007, 39(2):334-339. doi: 10.1016/j.commatsci.2006.06.010
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  7361
  • HTML全文浏览量:  3205
  • PDF下载量:  262
出版历程
  • 收稿日期:  2018-03-13
  • 修回日期:  2018-03-26

目录

    /

    返回文章
    返回