用PVDF压力计研究未反应JB-9014钝感炸药的Grüneisen参数

刘俊明 张旭 赵康 覃双 裴红波 张蓉

刘俊明, 张旭, 赵康, 覃双, 裴红波, 张蓉. 用PVDF压力计研究未反应JB-9014钝感炸药的Grüneisen参数[J]. 高压物理学报, 2018, 32(5): 051301. doi: 10.11858/gywlxb.20180524
引用本文: 刘俊明, 张旭, 赵康, 覃双, 裴红波, 张蓉. 用PVDF压力计研究未反应JB-9014钝感炸药的Grüneisen参数[J]. 高压物理学报, 2018, 32(5): 051301. doi: 10.11858/gywlxb.20180524
LIU Junming, ZHANG Xu, ZHAO Kang, QIN Shuang, PEI Hongbo, ZHANG Rong. Using PVDF Gauge to Study Grüneisen Parameter of Unreacted JB-9014 Insensitive Explosive[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051301. doi: 10.11858/gywlxb.20180524
Citation: LIU Junming, ZHANG Xu, ZHAO Kang, QIN Shuang, PEI Hongbo, ZHANG Rong. Using PVDF Gauge to Study Grüneisen Parameter of Unreacted JB-9014 Insensitive Explosive[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051301. doi: 10.11858/gywlxb.20180524

用PVDF压力计研究未反应JB-9014钝感炸药的Grüneisen参数

doi: 10.11858/gywlxb.20180524
基金项目: 

国防科工局技术基础科研项目 JSZL2016212C001

科学挑战专题 TZ2018001

详细信息
    作者简介:

    刘俊明(1990-), 男, 硕士研究生, 主要从事炸药状态方程研究.E-mail:13521934162@163.com

    通讯作者:

    张旭(1972-), 男, 博士, 研究员, 主要从事流体动力学研究.E-mail:caepzx@sohu.com

  • 中图分类号: O521.3

Using PVDF Gauge to Study Grüneisen Parameter of Unreacted JB-9014 Insensitive Explosive

  • 摘要: 为了获得未反应JB-9014炸药的Grüneisen参数Γ,在火炮加载平台上对JB-9014炸药进行一维平面冲击实验。实验中,将炸药样品安装于两个铜板之间,两个PVDF压力计分别安装在炸药样品前表面和中部,记录两个位置处的压力随时间的变化历程;将圆形铜板作为飞片安装于弹托前表面,利用火炮加速弹托,使飞片以一定速度撞击样品装置前铜板,前铜板中产生右行冲击波对炸药样品形成一次压缩;随后冲击波在炸药样品/后铜板交界面发生反射,产生左行冲击波对炸药样品形成二次压缩。假设炸药样品的Grüneisen参数Γ为常数,计算不同Γ值下炸药样品前表面和中部压力随时间的变化历程,将不同Γ下的计算值与实验值进行对比,获得了JB-9014钝感炸药Grüneisen参数的最优值,为1.7。

     

  • 图  实验装置示意

    Figure  1.  Illustration of experimental setup

    图  位置-时间关系

    Figure  2.  x-t relation

    图  压力-粒子速度关系

    Figure  3.  p-u relation

    图  第1发实验中示波器记录的结果

    Figure  4.  Results recorded by oscilloscope in the first experiment

    图  不同撞击速度下炸药的压力-时间曲线

    Figure  5.  Pressure-time curves of explosive under different impact velocities

    图  未反应JB-9014炸药的D-u关系

    Figure  6.  D-u relation of unreacted JB-9014 explosive

    图  dav-Γ关系

    Figure  7.  dav-Γ relation

    表  1  压力计2记录的压力-时间关系

    Table  1.   Pressure-time relation recorded by Gauge 2

    Exp.No. Experimental data Calculation data with Γ=1.7 d
    tA/μs tB/μs pA/GPa pB/GPa tA/μs tB/μs pA/GPa pB/GPa Point A Point B
    Shot 1 1.467 0 3.833 0 3.512 7 5.720 0 1.403 0 3.772 8 3.617 5 5.719 9 0.053 9 0.021 9
    Shot 2 1.324 0 3.423 6 4.880 0 8.130 0 1.283 0 3.469 3 5.102 8 8.125 0 0.054 1 0.006 6
    Shot 3 1.250 0 3.222 0 6.064 0 10.511 0 1.200 0 3.243 7 6.580 0 10.494 5 0.091 5 0.003 1
    Shot 4 1.209 0 3.046 0 6.750 0 14.421 3 1.201 0 3.162 9 7.217 0 11.514 3 0.076 9 0.255 2*
    Note:Asterisk represents incorrect data which would be ignored.
    下载: 导出CSV

    表  2  冲击波速度-粒子速度关系

    Table  2.   Shock-wave velocity vs.particle velocity

    Exp.No. u/(km·s-1) D/(km·s-1)
    Shot 1 0.574 0 3.647 4
    Shot 2 0.735 0 3.990 2
    Shot 3 0.913 0 4.369 3
    Shot 4 1.084 0 4.740 0
    Shot 5[28] 0.480 0 3.433 0
    Shot 6[28] 0.618 0 3.788 0
    Shot 7[28] 0.779 0 4.028 0
    Shot 8[28] 0.963 0 4.501 0
    Shot 9[28] 0.481 0 3.408 3
    Shot 10[28] 0.604 0 3.776 5
    Shot 11[28] 0.639 0 4.000 0
    Shot 12[28] 0.813 0 4.135 7
    下载: 导出CSV

    表  3  Γdav数据

    Table  3.   Γ and dav

    Γ dav
    1.0 0.057 81
    1.1 0.055 14
    1.2 0.052 44
    1.3 0.049 82
    1.4 0.047 65
    1.5 0.046 03
    1.6 0.044 60
    1.7 0.044 01
    1.8 0.045 92
    1.9 0.049 05
    2.0 0.052 44
    2.1 0.055 95
    2.2 0.059 55
    2.3 0.063 22
    2.4 0.066 97
    2.5 0.070 79
    2.6 0.074 67
    2.7 0.078 61
    2.8 0.082 61
    2.9 0.086 66
    下载: 导出CSV
  • [1] MURNAGHAN F D.Finite deformations of an elastic solid[J].American Journal of Mathematics, 1937, 59(2):235-260. doi: 10.2307/2371405
    [2] BIRCH F.Finite elastic strain of cubic crystals[J].Physical Review, 1947, 71(11):809-824. doi: 10.1103/PhysRev.71.809
    [3] VINET P, FERRANTE J, SMITH J R, et al.An universal equation of state for solids[J].Journal of Physics C:Solid State Physics, 1986, 19(20):467-473. doi: 10.1088/0022-3719/19/20/001
    [4] 经福谦.实验物态方程导引[M].2版.北京:科学出版社, 1999.
    [5] 李维新.一维不定常流与冲击波[M].北京:国防工业出版社, 2003:36-43, 212-213.
    [6] 王延飞. JOB-9003炸药未反应状态方程研究[D]. 绵阳: 中国工程物理研究院, 2016: 6-7. http://cdmd.cnki.com.cn/Article/CDMD-82818-1017004354.htm
    [7] BOEHLER R.Melting temperature, adiabats, and Grüneisen parameter of lithium, sodium and potassium versus pressure[J].Physical Review B, 1983, 27(11):6754-6762. doi: 10.1103/PhysRevB.27.6754
    [8] 王继海.多项式形式Mie-Grüneisen物态方程及其等熵线[J].爆炸与冲击, 1992, 12(1):1-9.

    WANG J H.Polynomial form of Mie-Grüneisen equation of state and its isentropes[J].Explosion and Shock Waves, 1992, 12(1):1-9.
    [9] 张婷, 毕延, 赵敏光.静高压加载下LY12铝的超声测量与等温状态方程[J].高压物理学报, 2005, 19(1):35-40. doi: 10.11858/gywlxb.2005.01.007

    ZHANG T, BI Y, ZHAO M G.Ultrasonic measurement and isothermal equation of state for LY12Al under static pressures[J].Chinese Journal of High Pressure Physics, 2005, 19(1):35-40. doi: 10.11858/gywlxb.2005.01.007
    [10] DUGDALE J S, MACDONALD D K C.The thermal expansion of solids[J].Physical Review, 1953, 89(4):832-834. doi: 10.1103/PhysRev.89.832
    [11] 吴强. 金属材料高压物态方程及Grüneisen[D]. 绵阳: 中国工程物理研究院, 2004.
    [12] NAGAYAMA K.Cold potential energy function for solids based on the theoretical models for Grüneisen parameter[J].Journal of Physics and Chemistry of Solids, 1997, 58(2):271-279. doi: 10.1016/S0022-3697(96)00118-7
    [13] KRIVTSOV A M, KUZ'KIN V A.Derivation of equations of state for ideal crystals of simple structure[J].Mechanics of Solids, 2011, 46(3):387-399. doi: 10.3103/S002565441103006X
    [14] STACEY F D, DAVIS P M.High pressure equations of state with applications to the lower mantle and core[J].Physics of the Earth and Planetary Interiors, 2004, 142(3/4):137-184. http://www.sciencedirect.com/science/article/pii/S0031920104001049
    [15] PENG X, XING L, FANG Z.Comparing research on the pressure or volume dependence of Grüneisen parameter[J].Physica B:Condensed Matter, 2007, 394(1):111-114. doi: 10.1016/j.physb.2007.02.022
    [16] 崔守鑫, 蔡灵仓, 胡海泉, 等.氯化钠晶体在高温高压下热物理参数的分子动力学计算[J].物理学报, 2005, 54(6):2826-2831. doi: 10.7498/aps.54.2826

    CUI S X, CAI L C, HU H Q, et al.Molecular dynamics simulation for thermophysical parameters of sodium chloride solids at high temperature and high pressure[J].Acta Physica Sinica, 2005, 54(6):2826-2831. doi: 10.7498/aps.54.2826
    [17] COHEN R E, GULSEREN O.Thermal equation of state of tantalum[J].Physical Review B, 2001, 63(22):224101. doi: 10.1103/PhysRevB.63.224101
    [18] WINTER R E, WHITEMAN G, HAINING G S, et al.Measurement of equation of state of silicone elastomer[J].AIP Conference Proceedings, 2004, 706(1):679-684. doi: 10.1063/1.1780330
    [19] DICK J J, FOREST C A, RAMSAY J B, et al.The Hugoniot and shock sensitivity of a plastic-bonded TATB explosive PBX 9502[J].Journal of Applied Physics, 1988, 63(10):4881-4888. doi: 10.1063/1.340428
    [20] FU H, LI T, TAN D W, et al.Shock Hugoniot relation of unreacted heterogeneous explosives[J].International Journal of Modern Physics B, 2011, 25(21):2905-2913. doi: 10.1142/S0217979211100527
    [21] SHEFFIELD S A, GUSTAVSEN R L, ALCON R R, et al.High pressure Hugoniot and reaction rate measurements in PBX9501[J].AIP Conference Proceedings, 2004, 706(1):1033-1036. https://www.researchgate.net/profile/Joseph_Zaug/publication/252473325_First_Results_of_Reaction_Propagation_Rates_in_HMX_at_High_Pressure/links/54e4ecdb0cf276cec172ab04.pdf
    [22] 于川, 池家春, 刘文翰, 等.JB-9001钝感炸药冲击Hugoniot关系测试[J].高压物理学报, 1998, 12(1):72-77. doi: 10.11858/gywlxb.1998.01.012

    YU C, CHI J C, LIU W H, et al.Shock Hugoniot relation of JB-9001 insensitive high explosive[J].Chinese Journal of High Pressure Physics, 1998, 12(1):72-77. doi: 10.11858/gywlxb.1998.01.012
    [23] 张旭, 池家春, 冯民贤.JB9014钝感炸药冲击绝热线测量[J].高压物理学报, 2001, 15(4):304-308. doi: 10.11858/gywlxb.2001.04.011

    ZHANG X, CHI J C, FENG M X.Hugoniot relation of JB9014 insensitive high explosive[J].Chinese Journal of High Pressure Physics, 2001, 15(4), 304-308. doi: 10.11858/gywlxb.2001.04.011
    [24] MILLETT J C F, BOURNE N K.The shock Hugoniot of a plastic bonded explosive and inert simulants[J].Journal of Physics D:Applied Physics, 2004, 37(18):2613-2617. doi: 10.1088/0022-3727/37/18/018
    [25] MILNE A, LONGBOTTOM A, BOURNE N, et al.On the unreacted Hugoniots of three plastic bonded explosives[J].Propellants, Explosives, Pyrotechnics, 2007, 32(1):68-72. doi: 10.1002/(ISSN)1521-4087
    [26] KAWAI H.The piezoelectricity of poly (vinylidene fluoride)[J].Japanese Journal of Applied Physics, 1969, 8(7):975-976. doi: 10.1143/JJAP.8.975
    [27] 谭叶, 俞宇颖, 戴诚达, 等.反向碰撞法测量Bi的低压Hugoniot数据[J].物理学报, 2011, 60(10):106401. doi: 10.7498/aps.60.106401

    TAN Y, YU Y Y, DAI C D, et al.Measurement of low-pressure Hugoniot data for bismuth with reverse-impact geometry[J].Acta Physics Sinica, 2011, 60(10):106401. doi: 10.7498/aps.60.106401
    [28] 刘俊明, 张旭, 裴红波, 等.JB-9014钝感炸药冲击Hugoniot关系测量[J].高压物理学报, 2018, 32(3):033202. http://www.gywlxb.cn/CN/abstract/abstract2081.shtml

    LIU J M, ZHANG X, PEI H B, et al.Measurement of Hugoniot relation for JB-9014 insensitive explosive[J].Chinese Journal of High Pressure Physics, 2018, 32(3):033202. http://www.gywlxb.cn/CN/abstract/abstract2081.shtml
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  6938
  • HTML全文浏览量:  2959
  • PDF下载量:  185
出版历程
  • 收稿日期:  2018-03-12
  • 修回日期:  2018-03-23

目录

    /

    返回文章
    返回