Numerical Simulation of Protective Envelope of Explosive Reaction Armor
-
摘要: 为了得到爆炸反应装甲的防护包络(即爆炸反应装甲与射流的接触面上不同弹着点处的抗弹性能),应用三维有限元分析软件LS-DYNA,对弹着点处于不同位置时反应装甲的抗弹性能进行数值仿真,并开展对比实验。结果表明,仿真结果与实验结果吻合较好。不同弹着点处的抗弹性能存在较大差异,抗弹性能最优区并非反应装甲的对称中心或其附近区域,而是距反应装甲底端22.7倍及46.9倍射流直径处;反应装甲的有效抗弹区域约占65.8%,有效抗弹区内的抗弹性能较边界区提高约37.5%,反应装甲下部的防护效能较上部好。Abstract: In this work, the three-dimensional finite element analysis software LS-DYNA was used to numerically simulate the ballistic performance of explosive reactive armor at different impact points, and the comparative experiments were also carried out in order to obtain the protective envelope of the explosive reaction armor, i.e., the ballistic performance at different impact points on the contact surface between the explosive reaction armor and the jet.The results show that the simulation results agree well with the experimental data.Studies indicate that there is a large difference in the ballistic performance at different impact points.Instead of the responsive armor's symmetrical center and its vicinity, the area with better ballistic performance is located 22.7 and 46.9 times of the jet diameter away from the bottom of the explosive reaction armor.The effective ballistic performance area of the explosive reaction armor accounts for approximately 65.8%, and its ballistic performance increased by about 37.5% compared to that of the border area.Furthermore, the protective capability at the lower part of the reaction armor is better than that at the upper part.
-
表 1 主装药和夹层炸药材料参数
Table 1. Parameters of main charge and confined-explosive
ρ/(g·cm-3) pCJ/GPa I/s-1 G1/(10-13 s·Pa-1) D/(km·s-1) a b c 1.72 27 4.4×1017 3.1 6.93 0 0.667 0.667 λig, max/(m·s-1) λG1, max/(m·s-1) λG2, max/(m·s-1) G2/(10-11 s·Pa-1) d g y z 0.3 0.5 0 4.0 0.111 1.0 1.0 2.0 表 2 仿真与实验结果对比
Table 2. Comparison between simulation and experimental results
Point Pmax/mm Exp. Sim. O 37.8 38.5 O4 34.5 33.8 O9 60.0 60.0 A2 27.8 24.3 A8 58.4 57.8 B8 55.1 56.5 表 3 不同弹着点处射流在后效靶的最大穿深
Table 3. Maximum penetration depth of witness targets penetrated by jet at different impact points
Area Point Pmax/mm Longitudinal
central axisB1 31.3 B2 27.2 B3 34.6 B4 42.1 B5 46.4 B6 51.8 B7 53.6 B8 56.5 B9 58.6 O 38.5 A1 28.9 A2 24.3 A3 33.7 A4 40.3 A5 50.7 A6 55.0 A7 56.1 A8 57.8 A9 60.0 Horizontal
central axisO1 34.8 O2 33.1 O3 35.6 O4 33.8 O5 34.0 O6 35.1 O7 36.2 O8 40.8 O9 60.0 Non-central
areaC1 28.3 C2 43.1 C3 45.6 C4 56.0 D1 25.1 D2 43.4 D3 52.2 D4 58.6 Edge area E1 41.3 E2 45.1 E3 46.8 E4 57.2 G1 58.5 G2 60.0 F1 40.1 F2 43.5 F3 45.0 F4 55.8 H1 59.0 H2 60.0 -
[1] MAYSELESS M, EHRLICH Y, FALCOVITZ Y, et al. Interaction of shaped charge jets with reactive armor[C]//Proceedings of the 8th International Symposium on Ballistics. Orlando, Florida, 1984, 7: 15-20. [2] HELD M, MAYSELESS M, ROTOTAEV E. Explosive reactive armor[C]//17th International Symposium on Ballistic. Midrand, South Africa, 1998: 32-40. [3] HELD M.Momentum theory of explosive reactive armours[J].Propellants, Explosives, Pyrotechnics, 2001, 26(2):91-96. doi: 10.1002/(ISSN)1521-4087 [4] HELD M.Stopping power of ERA sandwiches as a function of explosive layer thickness or plate velocities[J].Propellants, Explosives, Pyrotechnics, 2006, 31(3):234-238. doi: 10.1002/(ISSN)1521-4087 [5] MAYSELESS M.Effectiveness of explosive reactive armor[J].Journal of Applied Mechanics, 2011, 78(5):051006. doi: 10.1115/1.4004398 [6] ISMAIL M M, RAYAD A M, ALWANY H, et al. Optimization of performance of explosive reactive armors[C]//21st International Symposium on Ballistics. Adelaide, Australia, 2004: 227-232. [7] 吴成, 蒋建伟, 冯顺山, 等.爆炸反应装甲运动规律的数值仿真及研究[J].兵工学报, 2002, 23(1):35-38. http://www.cnki.com.cn/Article/CJFDTotal-JSGL201206018.htmWU C, JIANG J W, FENG S S, et al.A study on the moving features of explosive reactive armor by numerical simulation and experiments[J].Acta Armamentarii, 2002, 23(1):35-38. http://www.cnki.com.cn/Article/CJFDTotal-JSGL201206018.htm [8] 甄金朋. 平板装药飞板运动规律的数值模拟及研究[D]. 太原: 中北大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10110-2010262860.htm [9] 刘宏伟, 夏松林, 赵靖. V形反应装甲与射流作用过程分析[D]. 兵器材料科学与工程, 2011(4): 20-22. http://www.cqvip.com/QK/95120X/201104/38832989.htmlLIU H W, XIA S L, ZHAO J. Interaction process between jet and V-shaped double ERA[J]. Ordnance Material Science and Engineering, 2011(4): 20-22. http://www.cqvip.com/QK/95120X/201104/38832989.html [10] 武海军, 陈利, 王江波, 等.反应装甲对射流干扰的数值模拟研究[J].北京理工大学学报, 2006, 26(7):565-568. http://www.cnki.com.cn/Article/CJFDTotal-HPFS201801009.htmWU H J, CHEN L, WANG J B, et al.Numerical simulation on reactive armor disturbing jet[J].Transactions of Beijing Institute of Technology, 2006, 26(7):565-568. http://www.cnki.com.cn/Article/CJFDTotal-HPFS201801009.htm