基于总体经验模态分解和连续均方误差的侵彻过载信号分析方法

唐林 陈刚 吴昊

唐林, 陈刚, 吴昊. 基于总体经验模态分解和连续均方误差的侵彻过载信号分析方法[J]. 高压物理学报, 2018, 32(5): 055104. doi: 10.11858/gywlxb.20180518
引用本文: 唐林, 陈刚, 吴昊. 基于总体经验模态分解和连续均方误差的侵彻过载信号分析方法[J]. 高压物理学报, 2018, 32(5): 055104. doi: 10.11858/gywlxb.20180518
TANG Lin, CHEN Gang, WU Hao. Penetration Deceleration Signal Processing Method with Ensemble Empirical Mode Decomposition and Consecutive Mean Square Error[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 055104. doi: 10.11858/gywlxb.20180518
Citation: TANG Lin, CHEN Gang, WU Hao. Penetration Deceleration Signal Processing Method with Ensemble Empirical Mode Decomposition and Consecutive Mean Square Error[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 055104. doi: 10.11858/gywlxb.20180518

基于总体经验模态分解和连续均方误差的侵彻过载信号分析方法

doi: 10.11858/gywlxb.20180518
基金项目: 

国家自然科学基金 11572299

详细信息
    作者简介:

    唐林(1992-), 男, 硕士研究生, 主要从事冲击动力学研究.E-mail:tanglin1874@163.com

    通讯作者:

    陈刚(1971-), 男, 博士, 研究员, 主要从事冲击动力学研究.E-mail:chengang@caep.cn

  • 中图分类号: O385

Penetration Deceleration Signal Processing Method with Ensemble Empirical Mode Decomposition and Consecutive Mean Square Error

  • 摘要: 侵彻过载是攻坚武器及相关研究的重要参量。针对实测弹载侵彻过载曲线分析处理方法开展了研究,提出采用总体经验模态分解(EEMD)结合连续均方误差(CMSE)理论获取弹体刚体过载信号的方法。通过EEMD获得测试信号的本征模态函数分量,再运用CMSE理论判别高频干扰与侵彻信号的分界点,对不含分界点分量的高频分量进行抛弃处理,将其余低频信号进行重构获得弹体刚体过载信号。积分结果表明,重构信号在有效去除高频干扰的同时,完整保留了侵彻过载中弹体刚体的加速度信号。此外,整个分析过程所具有的信号自驱动特性避免了不同弹靶工况下滤波频率选择困难。

     

  • 图  典型实测侵彻过载曲线[7]

    Figure  1.  Typical deceleration-time histories of projectile[7]

    图  EEMD分解所得IMF分量、趋势项及分量频谱

    Figure  2.  IMF components, trend term from EEMD decomposition and components spectra

    图  CMSE曲线

    Figure  3.  Consecutive mean square error curve

    图  单层靶条件下重构信号与原始信号对比

    Figure  4.  Comparison between reconstructed and original signals of single layer target case

    图  重构信号与滤波信号的对比

    Figure  5.  Comparison between reconstructed and filtering signals

    图  单层靶条件下的重构效果

    Figure  6.  Reconstruction for single layer target case

    图  双层靶条件下原始信号与重构信号对比

    Figure  7.  Comparison between reconstructed and original signals of double-layer target case

    图  双层靶条件下的重构效果

    Figure  8.  Reconstruction for double-layer target case

  • [1] 黄家蓉, 刘瑞朝, 何翔, 等.侵彻过载测试信号的数据处理方法[J].爆炸与冲击, 2009, 29(5):555-560. doi: 10.11883/1001-1455(2009)05-0555-06

    HUANG J R, LIU R C, HE X, et al.A new data processing technique for measured penetration overloads[J].Explosion and Shock Waves, 2009, 29(5):555-560. doi: 10.11883/1001-1455(2009)05-0555-06
    [2] 赵海峰, 张亚, 李世中, 等.侵彻弹体频率特性分析及过载信号处理[J].中国机械工程, 2015, 26(22):3034-3039. doi: 10.3969/j.issn.1004-132X.2015.22.009

    ZHAO H F, ZHANG Y, LI S Z, et al.Frequency characteristics analyses of penetrating missile and penetration overload signal processing[J].China Mechanical Engineering, 2015, 26(22):3034-3039. doi: 10.3969/j.issn.1004-132X.2015.22.009
    [3] 徐鹏, 祖静, 范锦彪.高速动能弹侵彻硬目标加速度测试技术研究[J].振动与冲击, 2007, 26(11):118-122. doi: 10.3969/j.issn.1000-3835.2007.11.028

    XU P, ZU J, FAN J B.Study on acceleration test technique of high velocity kinetic energy projectile penetrating into hard target[J].Journal of Vibration and Shock, 2007, 26(11):118-122. doi: 10.3969/j.issn.1000-3835.2007.11.028
    [4] 王成华, 陈佩银, 徐孝诚.侵彻过载实测数据的滤波及弹体侵彻刚体过载的确定[J].爆炸与冲击, 2007, 27(5):416-419. doi: 10.11883/1001-1455(2007)05-0416-04

    WANG C H, CHEN P Y, XU X C.Filtering of penetration deceleration data and determining of penetration deceleration on the rigid-body[J].Explosion and Shock Waves, 2007, 27(5):416-419. doi: 10.11883/1001-1455(2007)05-0416-04
    [5] FORRESTAL M J, LUK V K.Penetration into soil targets[J].International Journal of Impact Engineering, 1992, 12(3):427-444. doi: 10.1016/0734-743X(92)90167-R
    [6] FRANCO R A, INGRAM J K. A very high shock data recorder[C]//IEEE Proceedings of Southeastcon'91, 1991: 503-507.
    [7] WU H, FANG Q, PENG Y, et al.Hard projectile perforation on the monolithic and segmented RC panels with a rear steel liner[J].International Journal of Impact Engineering, 2015, 76:232-250. doi: 10.1016/j.ijimpeng.2014.10.010
    [8] BOUDRAA A, CEXUS J C. Denoising via empirical mode decomposition[C]//Proceedings of IEEE ISCCSP, 2006.
    [9] WU Z, HUANG N E.Ensemble empirical mode decomposition:a noise-assisted data analysis method[J].Advances in Adaptive Data Analysis, 2009, 1(1):1-41. https://www.researchgate.net/publication/220531146_Ensemble_Empirical_Mode_Decomposition_a_Noise-Assisted_Data_Analysis_Method
    [10] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1998, 454: 903-995.
    [11] 朱赛, 尚伟.经验模态分解中包络线算法[J].火力与指挥控制, 2012, 37(9):125-128. https://www.mql5.com/zh/articles/439

    ZHU S, SHANG W.Analysis and study of envelope algorithm in EMD[J].Fire Control & Command Control, 2012, 37(9):125-128. https://www.mql5.com/zh/articles/439
    [12] 张梅军, 唐建, 何晓晖.EEMD方法及其在机械故障诊断中的应用[M].北京:国防工业出版社, 2015.
  • 加载中
图(8)
计量
  • 文章访问数:  7250
  • HTML全文浏览量:  2826
  • PDF下载量:  208
出版历程
  • 收稿日期:  2018-02-13
  • 修回日期:  2018-03-23

目录

    /

    返回文章
    返回