轴向载荷下功能梯度材料Timoshenko梁动力屈曲分析

黄悦 韩志军 路国运

黄悦, 韩志军, 路国运. 轴向载荷下功能梯度材料Timoshenko梁动力屈曲分析[J]. 高压物理学报, 2018, 32(4): 044104. doi: 10.11858/gywlxb.20180509
引用本文: 黄悦, 韩志军, 路国运. 轴向载荷下功能梯度材料Timoshenko梁动力屈曲分析[J]. 高压物理学报, 2018, 32(4): 044104. doi: 10.11858/gywlxb.20180509
HUANG Yue, HAN Zhijun, LU Guoyun. Dynamic Buckling of Functionally Graded Timoshenko Beam under Axial Load[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 044104. doi: 10.11858/gywlxb.20180509
Citation: HUANG Yue, HAN Zhijun, LU Guoyun. Dynamic Buckling of Functionally Graded Timoshenko Beam under Axial Load[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 044104. doi: 10.11858/gywlxb.20180509

轴向载荷下功能梯度材料Timoshenko梁动力屈曲分析

doi: 10.11858/gywlxb.20180509
基金项目: 

国家自然科学基金 11372209

山西省研究生教育改革研究课题 2015JG41

详细信息
    作者简介:

    黄悦(1991-), 女, 硕士研究生, 主要从事非线性动力屈曲研究.E-mail:huangyue_tyut@163.com

    通讯作者:

    韩志军(1964-), 男, 博士, 教授, 主要从事非线性动力屈曲研究.E-mail:13073578705@126.com

  • 中图分类号: O344.1;TB333

Dynamic Buckling of Functionally Graded Timoshenko Beam under Axial Load

  • 摘要: 假设功能梯度材料Timoshenko梁各项物性参数只沿厚度方向按幂函数进行连续变化,研究了功能梯度材料Timoshenko梁的动力屈曲。基于一阶剪切理论,采用Hamilton原理推导出轴向载荷作用下,功能梯度材料Timoshenko梁动力屈曲的控制方程。利用里兹法与棣莫弗公式相结合,获得了功能梯度材料Timoshenko梁在夹支-固支边界条件下动力屈曲临界载荷的解析表达式和屈曲解。应用MATLAB编程计算,讨论了功能梯度材料Timoshenko梁的几何尺寸、梯度指数、模态数、材料构成、泊松比以及弹性模量对临界载荷的影响。结果表明:功能梯度材料Timoshenko梁动力屈曲临界载荷随梁长度的增大而减小,随着梯度指数的增大而减小,随模态数的增大而增大,说明冲击载荷越大,高阶模态越容易被激发;随着泊松比和弹性模量的增大而增大,且泊松比的影响较小,而弹性模量的影响较大。由于剪切项的影响,临界载荷-临界长度的关系曲线在加载端变化趋势平缓。随着模态数的增大,梁的屈曲模态越为复杂。

     

  • 图  受轴向载荷作用的Timoshenko梁

    Figure  1.  Timoshenko beam under axial load

    图  不同材料构成下临界载荷与临界长度的关系

    Figure  2.  Relationship between critical load and critical length for different materials

    图  不同梯度指数下临界载荷与临界长度的关系

    Figure  3.  Relationship between critical load and critical length for different gradient indexes

    图  不同模态数下临界载荷与临界长度的关系

    Figure  4.  Relationship between critical load and critical length for different modal numbers

    图  不同截面高度下临界载荷与临界长度的关系

    Figure  5.  Relationship between critical load and critical length for different heights

    图  不同弹性模量下临界载荷与临界长度的关系

    Figure  6.  Relationship between critical load and critical length for different elasticity modulus

    图  不同泊松比下临界载荷与临界长度的关系

    Figure  7.  Relationship between critical load and critical length for different Poisson's ratios

    图  梁屈曲模态数取n=1模态图

    Figure  8.  Buckling mode of beam for n=1

    图  梁屈曲模态数取n=2模态图

    Figure  9.  Buckling mode of beam for n=2

    图  10  梁屈曲模态数取n=3模态图

    Figure  10.  Buckling mode of beam for n=3

    图  11  梁屈曲模态数取n=4模态图

    Figure  11.  Buckling mode of beam for n=4

    表  1  材料各项参数

    Table  1.   Material parameters

    Material Elasticity modulus
    E/GPa
    Density
    ρ/ (g·cm-3)
    Poisson's ratio
    μ
    Ceramic 385 3.96 0.23
    Titanium 108.5 4.54 0.41
    Iron 155 7.86 0.291
    Copper 119 8.96 0.326
    下载: 导出CSV
  • [1] BIRMAN V, BYRD L W.Modeling and analysis of functionally graded materials and structures[J]. Applied Mechanics Reviews, 2007, 60(5):195-216. doi: 10.1115/1.2777164
    [2] GUPTA A, TALHA M.Recent development in modeling and analysis of functionally graded materials and structures[J]. Progress in Aerospace Sciences, 2015, 79:1-14. doi: 10.1016/j.paerosci.2015.07.001
    [3] NAEBE M, SHIRVANIMOGHADDAM K.Functionally graded materials:a review of fabrication and properties[J]. Applied Materials Today, 2016, 5:223-245. doi: 10.1016/j.apmt.2016.10.001
    [4] KOCATURK T, AKBAŞ Ş D.Post-buckling analysis of Timoshenko beams made of functionally graded material under thermal loading[J]. Structural Engineering & Mechanics, 2012, 41(6):775-789. doi: 10.1007/s10999-010-9132-4
    [5] KOCATURK T, AKBAŞ Ş D.Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading[J]. Structural Engineering & Mechanics, 2011, 40(3):347-371. http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=KJKHB9_2011_v40n3_347
    [6] PAUL A.Non-linear thermal post-buckling analysis of FGM Timoshenko beam under non-uniform temperature rise across thickness[J]. Engineering Science & Technology:An International Journal, 2016, 19(3):1608-1625. https://www.sciencedirect.com/science/article/pii/S2215098616302853
    [7] ŞIMŞEK M.Buckling of Timoshenko beams composed of two-dimensional functionally graded material (2D-FGM) having different boundary conditions[J]. Composite Structures, 2016, 149:304-314. doi: 10.1016/j.compstruct.2016.04.034
    [8] ELTAHER M A, KHAIRY A, SADOUN A M, et al.Static and buckling analysis of functionally graded Timoshenko nanobeams[J]. Applied Mathematics &Computation, 2014, 229(229):283-295. https://www.sciencedirect.com/science/article/pii/S0096300313013556
    [9] RAHIMI G H, GAZOR M S, HEMMATNEZHAD M, et al.On the postbuckling and free vibrations of FG Timoshenko beams[J]. Composite Structures, 2013, 95(1):247-253. https://www.sciencedirect.com/science/article/pii/S0263822312003625
    [10] LI S R.Relations between buckling loads of functionally graded Timoshenko and homogeneous Euler-Bernoulli beams[J]. Composite Structures, 2013, 95(1):5-9.
    [11] KAHYA V, TURAN M.Finite element model for vibration and buckling of functionally graded beams based on the first-order shear deformation theory[J]. Composites Part B:Engineering, 2017, 109:108-115. doi: 10.1016/j.compositesb.2016.10.039
    [12] KIANI Y.Thermal buckling analysis of functionally graded material beams[J]. International Journal of Mechanics & Materials in Design, 2010, 6(3):229-238. doi: 10.1007/s10999-010-9132-4
    [13] ANANDRAO K S.Thermal post-buckling analysis of uniform slender functionally graded material beams[J]. Structural Engineering & Mechanics, 2010, 36(5):545-560. https://www.researchgate.net/publication/264077187_Thermal_post-buckling_analysis_of_uniform_slender_functionally_graded_material_beams
    [14] AKBAŞ Ş D, KOCATÜRK T.Post-buckling analysis of functionally graded three-dimensional beams under the influence of temperature[J]. Journal of Thermal Stresses, 2013, 36(12):1233-1254. doi: 10.1080/01495739.2013.788397
    [15] RYCHLEWSKA J.A new approach for buckling analysis of axially functionally graded beams[J]. Journal of Applied Mathematics & Computational Mechanics, 2015, 14(2):95-102.
    [16] FEREZQI H Z, TAHANI M, TOUSSI H E.Analytical approach to free vibrations of cracked Timoshenko beams made of functionally graded materials[J]. Mechanics of Advanced Materials & Structures, 2010, 17(5):353-365. doi: 10.1080/15376494.2010.488608?scroll=top&needAccess=true
    [17] 徐华, 李世荣.一阶剪切理论下功能梯度梁与均匀梁静态解之间的相似关系[J].工程力学, 2012, 29(4):161-167. http://www.cnki.com.cn/Article/CJFDTotal-GTLX201403013.htm

    XU H, LI S R.Analogous relationship between the static solutions of functionally graded beams and homogeneous beams based on the first-order shear deformation theory[J]. Engineering Mechanics, 2012, 29(4):161-167. http://www.cnki.com.cn/Article/CJFDTotal-GTLX201403013.htm
    [18] KIRCHHOFF G.Ueber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes[J]. Journal FüR Die Reine Und Angewandte Mathematik, 2009, 1859(56):285-313. https://eudml.org/doc/147766
    [19] 李楠, 韩志军, 路国运.基于里兹法研究复合材料层合板的动力屈曲问题[J].振动与冲击, 2016, 35(10):180-184. http://industry.wanfangdata.com.cn/jt/Detail/Periodical?id=Periodical_zdycj201610029

    LI N, HAN Z J, LU G Y.Research on dynamic buckling of laminated composite plates using Ritz method[J]. Journal of Vibration and Shock, 2016, 35(10):180-184. http://industry.wanfangdata.com.cn/jt/Detail/Periodical?id=Periodical_zdycj201610029
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  6906
  • HTML全文浏览量:  2885
  • PDF下载量:  184
出版历程
  • 收稿日期:  2018-01-22
  • 修回日期:  2018-02-06

目录

    /

    返回文章
    返回