空间碎片几何形状对激光烧蚀冲量的影响规律

陈川 龚自正 杨武霖 李明 余谦

陈川, 龚自正, 杨武霖, 李明, 余谦. 空间碎片几何形状对激光烧蚀冲量的影响规律[J]. 高压物理学报, 2018, 32(4): 040101. doi: 10.11858/gywlxb.20180508
引用本文: 陈川, 龚自正, 杨武霖, 李明, 余谦. 空间碎片几何形状对激光烧蚀冲量的影响规律[J]. 高压物理学报, 2018, 32(4): 040101. doi: 10.11858/gywlxb.20180508
CHEN Chuan, GONG Zizheng, YANG Wulin, LI Ming, YU Qian. Influence of Geometry of Space Debris on Laser Ablation Impulse[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 040101. doi: 10.11858/gywlxb.20180508
Citation: CHEN Chuan, GONG Zizheng, YANG Wulin, LI Ming, YU Qian. Influence of Geometry of Space Debris on Laser Ablation Impulse[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 040101. doi: 10.11858/gywlxb.20180508

空间碎片几何形状对激光烧蚀冲量的影响规律

doi: 10.11858/gywlxb.20180508
基金项目: 

国家安全重大基础研究计划 61331103

空间碎片专项 KJSP2016040103

详细信息
    作者简介:

    陈川(1988-), 男, 博士研究生, 主要从事激光驱动空间碎片、空间碎片主动移除、空间碎片环境治理等研究.E-mail:chenchuan0611@163.com

    通讯作者:

    龚自正(1964-), 男, 博士, 研究员, 主要从事航天器空间碎片超高速撞击防护、空间碎片在轨探测与移除、材料动态力学性能及高压物理等研究

  • 中图分类号: O532.25;V416.5;TN249

Influence of Geometry of Space Debris on Laser Ablation Impulse

  • 摘要: 激光烧蚀驱动是移除厘米级空间碎片非常有前景的技术,但空间碎片不规则的几何形状对激光烧蚀产生的驱动效果有十分复杂的影响,是目前研究的难点和热点之一。从激光烧蚀驱动目标冲量耦合规律出发,基于通过目标表面顶点的三角化三维重构,提出了一种可以精确计算激光辐照外形不规则目标所产生冲量大小及方向的方法。以立方体、球体和圆柱体3个典型的几何外形规则的目标为对象,验证了该方法的计算精度。利用该方法研究了激光辐照几何外形规则目标和不规则类球体小行星"贝努"产生的冲量规律,给出了在特定激光入射角度下不同几何外形目标产生最大冲量的条件。这一方法和结果对激光烧蚀驱动移除空间碎片技术研究有重要参考作用。

     

  • 图  激光驱动碎片原理

    Figure  1.  Schematic of driving debris by laser

    图  激光照射外形不规则目标

    Figure  2.  Schematic of irregularly shaped target under laser irradiation

    图  激光照射曲面

    Figure  3.  Schematic of curved surface under laser irradiation

    图  三角化三维重构过程

    Figure  4.  Schematic of three-dimensional triangulation reconstruction process

    图  基本计算单元

    Figure  5.  Basic computing unit

    图  不同顶点数量下立方体三角化重构

    Figure  6.  Triangulation reconstruction of cube with different vertex numbers

    图  不同顶点数量下球体三角化

    Figure  7.  Triangulation reconstruction of sphere with different vertex numbers

    图  不同顶点数量下圆柱体三角化

    Figure  8.  Triangulation reconstruction of cylinder with different vertex numbers

    图  冲量偏角β

    Figure  9.  Diagram of impulse angle β

    图  10  激光照射圆柱体

    Figure  10.  Schematic of cylinder under laser irradiation

    图  11  圆柱体在不同角度激光照射下产生的冲量占平面目标冲量的比例

    Figure  11.  Impulse percentage of cylinder to planner target irradiated by laser at different angles

    图  12  圆柱体在不同角度激光照射下产生的冲量偏角

    Figure  12.  Impulse angle of cylinder irradiated by laser at different angles

    图  13  激光照射圆锥体

    Figure  13.  Schematic of cone under laser irradiation

    图  14  圆锥体在不同角度激光照射下产生的冲量占平面目标冲量的比例

    Figure  14.  Impulse percentage of cone to planner target irradiated by laser at different angles

    图  15  圆锥体在不同角度激光照射下产生的冲量偏角

    Figure  15.  Impulse angle of cone irradiated by laser at different angles

    图  16  行星贝努[16]

    Figure  16.  Asteroid Bennu[16]

    图  17  贝努表面三角化重构

    Figure  17.  Triangulation reconstruction of the Bennu

    图  18  贝努在不同角度激光照射下产生的冲量占平面/球体目标的比例

    Figure  18.  Impulse percentage of Bennu to plane/sphere target irradiated by laser at different angles

    图  19  贝努在不同角度激光照射下产生的冲量偏角

    Figure  19.  Impulse angle of Bennu irradiated by laser at different angles

    表  1  不同顶点数量下立方体三角化计算结果

    Table  1.   results of cube with different vertex numbers

    Vertex
    number
    Mass/
    g
    Moment of inertia/
    (10-4g·m2)
    Impulse/
    (mN·s)
    Velocity/
    (mm·s-1)
    Angular velocity/
    (rad·s-1)
    JxJyJzPxPyPzΔvxΔvyΔvzωxωyωz
    82.71.311.311.311.961.961.96-2.493-2.493-2.493000
    142.71.311.311.311.961.961.96-2.493-2.493-2.493000
    502.71.311.311.311.961.961.96-2.493-2.493-2.493000
    1302.71.311.311.311.961.961.96-2.493-2.493-2.493000
    Formula2.71.311.311.311.961.961.96-2.493-2.493-2.493000
    下载: 导出CSV

    表  2  不同顶点数量下球体三角化计算结果

    Table  2.   Calculation results of sphere with different vertex numbers

    Vertex
    number
    Mass/
    g
    Moment of inertia/
    (g·m2)
    Impulse/
    (mN·s)
    Velocity/
    (mm·s-1)
    Angular velocity/
    (10-7rad·s-1)
    JxJyJzPxPyPzΔvxΔvyΔvzωxωyωz
    72158.926 603 10.1090.1090.1052.6932.6912.5345.8205.8205.4772 22012110 200
    222170.834 427 50.1220.1220.1212.7442.7462.7155.5185.5215.4596.746.983 790
    382172.723 740 50.1240.1240.1232.7662.7662.7185.5015.5005.4062.224.953 250
    762174.891 641 20.1260.1260.1262.7692.7682.7645.4385.4375.4292.025.552 820
    1 452175.755 229 00.1270.1270.1272.7752.7752.7715.4255.4245.4151.713.79217
    2 452176.064 045 80.1280.1280.1282.7792.7792.7735.4225.4225.4071.423.46192
    Formula176.6250.1290.1290.1292.7802.7802.7805.4065.4065.406000
    下载: 导出CSV

    表  3  不同顶点数量下圆柱体三角化计算结果

    Table  3.   Calculation results of cylinder with different vertex numbers

    Vertex
    number
    Mass/
    g
    Moment of inertia/
    (g·m2)
    Impulse/
    (mN·s)
    Velocity/
    (mm·s-1)
    Angular velocity/
    (10-8rad·s-1)
    JxJyJzPxPyPzΔvxΔvyΔvzωxωyωz
    32347.290 10.560 50.560 50.295 75.3055.3023.6035.2495.2493.5653.72×10-44.75×10-42.52
    62365.152 70.597 20.597 20.326 75.3695.3693.7885.0535.0533.5651.21×10-85.23×10-82.50
    122369.618 30.606 70.606 70.334 85.3865.3863.8355.0065.0063.5653.52×10-162.76×10-162.39
    162369.618 30.606 70.606 70.334 85.3865.3863.8355.0065.0063.5653.52×10-162.75×10-162.39
    202369.618 30.606 70.606 70.334 85.3865.3863.8355.0065.0063.5653.52×10-162.78×10-162.39
    242370.305 30.608 50.608 50.336 45.3885.3883.8444.9974.9973.5652.01×10-161.92×10-162.40
    Formula370.992 40.609 90.609 90.337 65.3895.3893.8494.9884.9883.563000
    下载: 导出CSV
  • [1] LIOU J C.An active debris removal parametric study for LEO environment remediation[J].Advances in Space Research, 2011, 47:1865-1876. doi: 10.1016/j.asr.2011.02.003
    [2] 龚自正, 徐坤博, 牟永强, 等.空间碎片环境现状与主动移除技术[J].航天器环境工程, 2014, 31(2):129-135. http://mall.cnki.net/magazine/article/HTHJ201402004.htm

    GONG Z Z, XU K B, MU Y Q, et al.The space debris environment and the active debris removal techniques[J].Spacecraft Environment Engineering, 2014, 31(2):129-135. http://mall.cnki.net/magazine/article/HTHJ201402004.htm
    [3] 杨武霖, 龚自正, 牟永强, 等.天基激光清除空间碎片方案与可行性研究[J].航天器环境工程, 2015, 32(4):361-365. doi: 10.3969/j.issn.1673-1379.2015.04.004

    YANG W L, GONG Z Z, MU Y Q, et al.Active removal of space debris by space-based laser system and its feasibility analysis[J].Spacecraft Environment Engineering, 2015, 32(4):361-365. doi: 10.3969/j.issn.1673-1379.2015.04.004
    [4] 张品亮, 龚自正, 杨武霖, 等.激光移除空间碎片过程的三维仿真与建模[J].宇航学报, 2017, 38(3):323-330. http://mall.cnki.net/magazine/Article/HKXB201206005.htm

    ZHANG P L, GONG Z Z, YANG W L, et al.Three-dimensional simulation and modeling on removing orbital debris with laser[J].Journal of Astronautics, 2017, 38(3):323-330. http://mall.cnki.net/magazine/Article/HKXB201206005.htm
    [5] PHIPPS C R.A laser optical system to re-enter or lower low earth orbit space debris[J].Acta Astronautica, 2014, 93:418-429. doi: 10.1016/j.actaastro.2013.07.031
    [6] PHIPPS C R, TURNER T P, HARRISON R F, et al.Impulse coupling to targets in vacuum by KrF, HF, and CO2 single-pulse lasers[J].Applied Physics, 1988, 64:1083-1096. doi: 10.1063/1.341867
    [7] PHIPPS C R, BAKER K L, LIBBY S B, et al.Removing orbital debris with laser[J].Advances in Space Research, 2012, 49:1283-1300. doi: 10.1016/j.asr.2012.02.003
    [8] 金星, 常浩, 洪延姬, 等.激光辐照不规则空间碎片冲量矢量计算[J].强激光与粒子束, 2012, 24(8):1956-1960. http://www.opticsjournal.net/abstract.htm?id=OJ120809000072rXt1w4

    JIN X, CHANG H, HONG Y J, et al.Impulse calculation for irregularly shaped space debris under laser irradiation[J].High Power Laser and Particle Beams, 2012, 24(8):1956-1960. http://www.opticsjournal.net/abstract.htm?id=OJ120809000072rXt1w4
    [9] 张品亮, 龚自正, 汤秀章, 等.激光驱动典型几何形状碎片运动建模研究[J].航天器环境工程, 2017, 34(4):138-140. http://cdmd.cnki.com.cn/Article/CDMD-10611-1015971112.htm

    ZHANG P L, GONG Z Z, TANG X Z, et al.Dynamic modeling of laser-driven space debris of typical shapes[J].Spacecraft Environment Engineering, 2017, 34(4):138-140. http://cdmd.cnki.com.cn/Article/CDMD-10611-1015971112.htm
    [10] LIEDAHL D A, LIBBY S B, RUBENCHIK A. Momentum transfer by laser ablation of irregularly shaped space debris: LLNL-PROC-423224[R]. AIP, 2010.
    [11] LIEDAHL D A, RUBENCHIK A, LIBBY S B, et al.Pulsed laser interactions with space debris:target shape effects[J].Advances in Space Research, 2013, 52:895-915. doi: 10.1016/j.asr.2013.05.019
    [12] PHIPPS C R, BONNAL C.A spaceborne, pulsed UV laser system for re-entering or nudging LEO debris, and re-orbiting GEO debris[J].Acta Astronautica, 2016, 118:224-236. doi: 10.1016/j.actaastro.2015.10.005
    [13] SCHALL W O.Laser radiation for cleaning space debris from lower earth orbits[J].Journal of Spacecraft and Rockets, 2002, 39:81-91. doi: 10.2514/2.3785
    [14] 常浩, 金星, 周伟静.纳秒激光烧蚀铝等离子体羽流膨胀特性实验[J].红外与激光工程, 2013, 42:43-46. doi: 10.3969/j.issn.1007-2276.2013.z1.009

    CHANG H, JIN X, ZHOU W J.Experiment research on plume expansion induced by nanosecond laser ablation Al[J].Infrared and Laser Engineering, 2013, 42:43-46. doi: 10.3969/j.issn.1007-2276.2013.z1.009
    [15] 廖家志. 基于曲面约束的空间Delaunay三角剖分方法研究[D]. 成都: 电子科技大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10614-1013332229.htm

    LIAO J Z. The research of space Delauany triangulation constrainted by surface[D]. Chengdu: University of Electronic Science and Technology of China, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10614-1013332229.htm
    [16] Shape model of asteroid (101955) Bennu[EB/OL]. [2018-01-10]. https://sbn.psi.edu/pds/resource/bennushape.html.
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  8097
  • HTML全文浏览量:  3317
  • PDF下载量:  457
出版历程
  • 收稿日期:  2018-01-18
  • 修回日期:  2018-02-07

目录

    /

    返回文章
    返回