Study on the Penetration Performance of Different Shaped DU Alloy
-
摘要: 为研究不同形状贫铀(Depleted Uranium,DU)合金破片的侵彻性能,首先进行了终点弹道实验,得到了圆柱形DU破片侵彻20 mm厚Q235B钢靶的终点弹道相关参数。然后通过AUTODYN软件进行了相应终点弹道仿真模拟,结果表明,仿真与实验结果基本一致,验证了仿真结果的正确性。随后又在原仿真的基础上增加了圆柱形、立方形和球形破片以不同着靶姿态侵彻靶板的数值仿真。结果表明,在相同质量和相同初速的条件下,棱角着靶姿态的立方体、楞线着靶姿态的立方体和球形破片的侵彻能力依次减弱,圆柱形和平行着靶姿态的立方形破片侵彻能力最差。若均以垂直姿态着靶,圆柱形破片侵彻能力要强于立方体,以棱角或楞线着靶姿态着靶的立方体具有更强的侵彻能力。Abstract: To study the penetration performance of different shapes of a DU alloy fragment, we performed an experiment on a Q235B steel target with a thickness of 20 mm and obtained its terminal ballistic marriage parameters of cylindrical DU alloy fragment penetration.Then, we carried out the corresponding simulation of the key ballistic trajectory using the ANTODYN software.The results from the simulation were found to accord basically with those from the experiment, thereby verifying the simulation results as correct.Furthermore, on the basis of the original simulation, we simulated the cylindrical, cubic and spherical fragments penetrating the target plate with different target positions taken into account.The results show that, in the same quality and at the same velocity, the penetration capability of the cubic fragments in the attitude of the edges and the target cube diminishes in turn with the attitude of the target cube and the spherical fragment, with those in cylindrical and parallel attitude as the weakest.Moreover, hitting the target vertically, the cubic fragment exhibits a stronger penetration than that of the cylindrical, and it shows a better penetration capability when hitting the target in an angular or corrugated attitude.
-
Key words:
- DU alloy /
- fragment shape /
- penetration performance /
- constitutive model /
- finishing trajectory
-
表 1 破片侵彻靶板实验方案
Table 1. Scheme for experiment of target penetration by broken pieces
Experiment Fragment
materialρ/(g·cm-3) Fragment
size/mmFragment
quality/gTarget
materialTarget
size/mmMaximum
charge/g1 DU 18.47 ∅9 ×9 10.5 Q235B 100×100×20 14 表 2 破片侵彻靶板实验结果
Table 2. Summarized data of target experiment
Experiment Fragment
quality/gCharge
quality/gInitial velocity/
(m·s-1)Remaining
velocity/(m·s-1)Frontal
aperture/mmBack
aperture/mmPentration
depth/mm1 10.5 14 1 295 234 15 10 Breakthrough Material Yield stress B n C ${{\dot \varepsilon }_0}$ Tm/K Tr/K G/GPa ρ/(kg·m-3) DU alloy 1 079.0 1 120 0.25 0.007 1.00 1 473 293 83.3 18 620 Q235B 244.8 400 0.36 0.039 0.55 1 795 300 77.0 7 800 表 4 状态方程主要相关参数
Table 4. Main parameters of equation of state
Material Grüneisen parameter C1 S1 DU alloy 2.32 2 590 1.56 Q235B steel 1.93 4 070 1.49 Material C1 C2 C3 C4 C5 DU alloy 1.8 0.33 -1.5 0.021 0 Q235B steel -43.408 44.608 -0.016 0.015 0.046 表 6 破片侵彻靶板实验及仿真
Table 6. Experiment and simulation of target penetration by broken pieces
Method Fragment
quality/gInitial velocity/
(m·s-1)Residual velocity/
(m·s-1)Frontal
aperture/mmBack
aperture/mmPentration
depth/mmExperiment 10.5 1 295 234 15 10 Breakthrough Simulation 10.5 1 295 250 16 11 Breakthrough 表 7 仿真模型设计参数
Table 7. Simulation model design parameters
Group Fragment
materialFragment size
and shape/mmTarget
materialTarget
size/mmTarget
attitudeA
B
C
D
EDU
DU
DU
DU
DU∅9×9 cylindrical
8.3×8.3×8.3 cube
8.3×8.3×8.3 cube
8.3×8.3×8.3 cube
∅10.3 sphericalQ235B
Q235B
Q235B
Q235B
Q235B60×60×20
60×60×20
60×60×20
60×60×20
60×60×20Parallel
Vertical
Arbitrary corrugated line
Arbitrary angle
Arbitrary表 8 各组残余破片相关参数
Table 8. Residual fragment correlation parameters of each group
Group Residual velocity/
(m·s-1)Residual
mass/gMass
loss/%Initial 250 6.15 42.0 A 300 6.09 36.8 B 270 5.79 44.9 C 430 9.16 12.8 D 500 9.36 10.9 E 400 7.61 21.5 -
[1] ECKELMEYER K H. Diffusional transformations, strengthening mechanisms, and mechanical properties of uranium alloys: SAND 82-0524[R]. Albuquerque, NM: Sandia National Laboratories, 1982. [2] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//7th International Symposium on Ballistics. The Hague, Netherlands, 1983(11): 541-547. [3] 何立峰, 肖大武, 巫祥超, 等.U-Ti合金变形及失效机理的SHPB研究[J].稀有金属材料与工程, 2013, 42(7):1382-1386. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xyjsclygc201307014HE L F, XIAO D W, WU X C, et al.Deformation and failure mechanism of U-Ti alloy by SHPB[J].Rare Metal Materials and Engineering, 2013, 42(7):1382-1386. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xyjsclygc201307014 [4] 岳明凯, 曲家惠.穿甲弹弹芯材料的发展趋势研究[J].飞航导弹, 2010(12):67-70. http://d.old.wanfangdata.com.cn/Periodical/fhdd201012015YUE M K, QU J H.Research on the development trend of piercing projectile core material[J].Aerodynamic Missile Journal, 2010(12):67-70. http://d.old.wanfangdata.com.cn/Periodical/fhdd201012015 [5] 石杰, 王小英, 赵雅文, 等.热处理对铌合金变形局域化的影响[J].稀有金属材料与工程, 2014(11):2836-2840. http://www.cqvip.com/QK/92850X/201411/663144330.htmlSHI J, WANG X Y, ZHAO Y W, et al.Effects of heat treatment on microstructure and dynamic shear localization of U-Nb alloy[J].Rare Metal Materials and Engineering, 2014, 42(11):2836-2840. http://www.cqvip.com/QK/92850X/201411/663144330.html [6] 沈春霞, 王百荣, 王斌, 等. 贫铀弹撞击气溶胶量仿真计算[C]//第十四届全国核电子学与核探测技术学术年会论文集. 北京: 中国核学会, 2008: 861-864.SHEN C X, WANG B R, WANG B, et al. Depletion of depleted uranium bullets by aerosol mass simulation[C]//Proceedings of the 14th National Conference on Nuclear Electronics and Nuclear Detection Technology. Beijing: CNS, 2008: 861-864. [7] 楼建峰, 王政, 洪涛, 等.钨合金杆侵彻半无限厚铝合金靶的数值研究[J].高压物理学报, 2009, 23(1):65-70. doi: 10.11858/gywlxb.2009.01.011LOU J F, WANG Z, HONG T, et al.Numerical study on penetration of semi-infinite aluminum-alloy targets by tungsten-alloy rod[J].Chinese Journal of High Pressure Physics, 2009, 23(1):65-70. doi: 10.11858/gywlxb.2009.01.011 [8] 陈刚, 陈小伟, 陈忠富, 等.A3钢钝头弹撞击45钢板破坏模式的数值分析[J].爆炸与冲击, 2007, 27(5):390-397. doi: 10.11883/1001-1455(2007)05-0390-08CHEN G, CHEN X W, CHEN Z F, et al.Numerical analysis of failure modes of 45 steel by A3 steel blunt bullet[J].Explosion and Shock Waves, 2007, 27(5):390-397. doi: 10.11883/1001-1455(2007)05-0390-08 [9] 林莉, 支旭东, 范峰, 等.Q235B钢Johnson-Cook模型参数的确定[J].振动与冲击, 2014, 33(9):153-158. http://www.docin.com/p-1544408298.htmlLIN L, ZHI X D, FAN F, et al.Determination of parameters of Johnson-Cook models of Q235B steel[J].Journal of Vibration and Shock, 2014, 33(9):153-158. http://www.docin.com/p-1544408298.html [10] 陈小伟, 张方举, 梁斌, 等.A3钢钝头弹撞击45钢板破坏模式的试验研究[J].爆炸与冲击, 2006, 26(3):199-207. doi: 10.11883/1001-1455(2006)03-0199-09CHEN X W, ZHANG F J, LIANG B, et al.Three modes of penetration mechanics of A3 steel cylindrical projectiles impact onto 45 steel plates[J].Explosion and Shock Waves, 2006, 26(3):199-207. doi: 10.11883/1001-1455(2006)03-0199-09