弹体斜撞击单层金属薄靶的数值仿真

郭子涛 郭钊 张伟

郭子涛, 郭钊, 张伟. 弹体斜撞击单层金属薄靶的数值仿真[J]. 高压物理学报, 2018, 32(4): 045101. doi: 10.11858/gywlxb.20180503
引用本文: 郭子涛, 郭钊, 张伟. 弹体斜撞击单层金属薄靶的数值仿真[J]. 高压物理学报, 2018, 32(4): 045101. doi: 10.11858/gywlxb.20180503
GUO Zitao, GUO Zhao, ZHANG Wei. Numerical Study of the Oblique Perforation of Single Thin Metallic Plates[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 045101. doi: 10.11858/gywlxb.20180503
Citation: GUO Zitao, GUO Zhao, ZHANG Wei. Numerical Study of the Oblique Perforation of Single Thin Metallic Plates[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 045101. doi: 10.11858/gywlxb.20180503

弹体斜撞击单层金属薄靶的数值仿真

doi: 10.11858/gywlxb.20180503
基金项目: 

国家自然科学基金 11072072

江西省青年基金 20161BAB211001

详细信息
    作者简介:

    郭子涛(1979-), 男, 博士, 讲师, 主要从事冲击动力学研究.E-mail:guozitao@hotmail.com

    通讯作者:

    张伟(1964-), 男, 教授, 博士生导师, 主要从事冲击动力学研究

  • 中图分类号: O347.3

Numerical Study of the Oblique Perforation of Single Thin Metallic Plates

  • 摘要: 通过调用ABAQUS子程序引入修正的靶板J-C本构模型和修正的应力三轴度三分段式失效准则,开展了平头、卵形弹0°~60°斜撞击单层Q235钢薄靶的数值仿真计算,分析了弹体头部形状、撞击角度对靶板防护性能及失效模式的影响,同时对弹体击穿靶板后的角度偏转问题进行了分析,并提出了一个改进的角度偏转半理论模型。结果发现:平头弹在各个撞击角度下较卵形弹更容易击穿靶板;靶板的防护性能与弹体造成的靶板损伤及失效模式紧密相关,单层靶板在平头弹以同一角度分别低速和高速斜撞击后具有不同的失效模式,而在卵形弹斜撞击下失效模式相差不大;仿真与实验结果吻合较好。

     

  • 图  弹体形状示意

    Figure  1.  Sketches of projectile shapes

    图  弹体斜撞击角度β定义

    Figure  2.  Definition of oblique impact angle β

    图  斜撞击数值仿真模型s

    Figure  3.  Numerical models for oblique impacts

    图  Q235弹体的Taylor撞击实验结果与仿真结果对比

    Figure  4.  Comparison of Q235 projectiles' fracture patterns in Taylor experiments and simulations

    图  实验获得的两种弹体斜撞击1 mm厚单层靶的典型贯穿过程

    Figure  5.  Typical oblique penetration processes of 1 mm-thick targets by two kinds of projectiles in experiments

    图  仿真获得的两种弹体斜撞击1 mm厚单层靶的典型贯穿过程

    Figure  6.  Typical oblique penetration processes of 1 mm-thick targets by two kinds of projectiles in simulations

    图  实验和仿真得到的两种头型弹体斜撞击单层1 mm厚Q235钢板的初始速度-剩余速度比较

    Figure  7.  Comparison of initial velocity-residual velocity between experiments and simulations for 1 mm-thick single target obliquely impacted by two nose shape projectiles

    图  实验和仿真确定的弹体穿透靶板的弹道极限随弹体撞击角度的变化对比

    Figure  8.  Comparison of ballistic limits vs. impact angle between experiments and simulations

    图  两种弹体在各个角度斜撞击靶板下的弹道极限的实验与仿真结果比较

    Figure  9.  Comparison of ballistic limits obtained by simulations and experiments for two nose shape projectiles at different obliquity angles

    图  10  实验和仿真获得的单层靶板在两种头型弹体斜撞击下的失效形式对比

    Figure  10.  Comparison of failure patterns of single target impacted by two nose shape projectiles between experiment and simulation

    图  11  单层靶板在平头弹以低速和高速不同角度斜撞击后的失效形式

    Figure  11.  Failure modes of single target impacted by flat-nosed projectiles at low and high velocities

    图  12  实验和仿真获得的卵形弹以45°斜角度撞击靶板前、后偏转角随撞击速度的变化

    Figure  12.  Experimental and simulated angular deflection vs. impact velocity for ogive-nosed projectiles impacting taget at 45° oblique angle

    图  13  仿真得到的平头弹和卵形弹斜撞击1 mm厚单层靶的角度偏转随无量纲速度的变化

    Figure  13.  Numerical variation of angular deflection with dimensionless velocity for flat- and ogive-nosed projectiles obliquely perforating single target with the thickness of 1 mm

    图  14  模型中tan δ50值与弹体撞击角度之间的关系

    Figure  14.  Relations between the value of tan δ50 and impact angle of projectiles

    表  1  弹体的材料参数

    Table  1.   Material constants of projectile

    Density/(kg·m-3) E/GPa Possion's ratio σ0/MPa Et/GPa
    7 850 204 0.33 1 900 15
    下载: 导出CSV

    表  2  Q235钢的本构模型及失效模型相关参数

    Table  2.   Material constants for Q235 steel

    Density/(kg·m-3) E/GPa Possion's ratio Tr/K Tm/K A/MPa
    7 800 200 0.33 293 1 795 293.8
    B/MPa n C m1 m2 cp/(J·kg-1·K-1)
    230.2 0.578 0.065 2 1.762 1.278 469
    χ D1 D2 D3 D4 D5
    0.9 0.472 18.73 -7.805 -0.019 3 13.017
    D6 D01 D02 D03 ${{\dot{\varepsilon }}_{0}}$/s-1
    2.338 0.511 -6.80 4.047 2.1×10-3
    下载: 导出CSV

    表  3  平头弹和卵形弹斜撞击单层靶的弹道极限及相应模型参数

    Table  3.   Ballistic limits and other model constants for single target obliquely impacted byflat- and ogive-nosed projectiles

    β Flat-nosed projectile Ogive-nosed projectile
    a p v50/(m·s-1) a p v50/(m·s-1)
    0.95 2.68 86.10 1.06 1.69 75.76
    15° 0.92 1.93 67.04 1.01 1.93 76.75
    30° 0.99 1.61 57.44 0.97 2.16 84.90
    45° 0.99 1.68 63.50 1.14 1.48 86.90
    60° 1.18 1.51 95.91
    下载: 导出CSV
  • [1] BØRVIK T, LANGSETH M, HOPPERSTAD O S, et al.Perforation of 12mm thick steel plates by 20mm diameter projectiles with flat, hemispherical and conical noses:Part Ⅰ:experimental study[J].International Journal of Impact Engineering, 2002, 27:19-35. doi: 10.1016/S0734-743X(01)00034-3
    [2] BØRVIK T, HOPPERSTAD O S, BERSTAD T, et al.Perforation of 12mm thick steel plates by 20mm diameter projectiles with flat, hemispherical and conical noses:Part Ⅱ:numerical simulations[J].International Journal of Impact Engineering, 2002, 27:37-64. doi: 10.1016/S0734-743X(01)00035-5
    [3] GUPTA N K, IQBAL M A, SEKHON G S.Experimental and numerical studies on the behavior of thin aluminum plates subjected to impact by blunt and hemispherical-nosed projectiles[J].International Journal of Impact Engineering, 2006, 32:1921-1944. doi: 10.1016/j.ijimpeng.2005.06.007
    [4] GUPTA N K, IQBAL M A, SEKHON G S.Effect of projectile nose shape, impact velocity and target thickness on deformation behavior of aluminum plates[J].International Journal of Solids and Structures, 2007, 44:3411-3439. doi: 10.1016/j.ijsolstr.2006.09.034
    [5] ZHOU D W, STRONGE W J.Ballistic limit for oblique impact of thin sandwich panels and spaced plates[J].International Journal of Impact Engineering, 2008, 35:1339-1354. doi: 10.1016/j.ijimpeng.2007.08.004
    [6] GOLDSMITH W.Non-ideal projectile impact on targets[J].International Journal of Impact Engineering, 1999, 22(2/3):95-395. https://www.deepdyve.com/lp/elsevier/non-ideal-projectile-impact-on-targets-5Ud62WhB2Q
    [7] IQBAL M A, GUPTA G, GUPTA N K.3D numerical simulations of ductile targets subjected to oblique impact by sharp nosed projectiles[J].International Journal of Solids and Structures, 2010, 47(2):224-237. doi: 10.1016/j.ijsolstr.2009.09.032
    [8] IQBAL M A, CHAKRABARTI A, BENIWAL S, et al.3D numerical simulations of sharp nosed projectile impact on ductile targets[J].International Journal of Impact Engineering, 2010, 37(2):185-195. doi: 10.1016/j.ijimpeng.2009.09.008
    [9] IQBAL M A, SENTHIL K, MADHU V, et al.Oblique impact on single, layered and spaced mild steel targets by 7.62 AP projectile[J].International Journal of Impact Engineering, 2017, 110:26-38. doi: 10.1016/j.ijimpeng.2017.04.011
    [10] GUPTA P K, IQBAL M A, MOHAMMAD Z, et al. Energy absorption in thin metallic targets subjected to oblique projectile impact: a numerical study[J]. Thin-Walled Structures, 2018[2018-01-09]. https://doi.org/10.1016/j.tws.2017.08.005.
    [11] BØRVIK T, OLOVSSON L, DEY S, et al.Normal and oblique impact of small arms bullets on AA6082-T4 aluminium protective plates[J].International Journal of Impact Engineering, 2011, 38(7):577-589. doi: 10.1016/j.ijimpeng.2011.02.001
    [12] 陈刚, 陈忠富, 张方举, 等.截锥形弹体侵彻薄靶板实验研究[J].弹箭与制导学报, 2005, 25(4):888-890. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=djyzdxb200504285

    CHEN G, CHEN Z F, ZHANG F J, et al.Experimental study on the penetration of thin plates by truncated conical projectiles[J].Missiles and Guidance, 2005, 25(4):888-890. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=djyzdxb200504285
    [13] 陈刚, 陈忠富.截锥形空心弹体侵彻薄靶板的数值模拟[J].弹箭与制导学报, 2008, 28(6):99-102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=djyzdxb200806028

    CHEN G, CHEN Z F.Numerical study on the penetration of thin plates by truncated hollow conical projectiles[J].Missiles and Guidance, 2008, 28(6):99-102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=djyzdxb200806028
    [14] 张青平, 陈刚, 屈明.截锥型战斗部斜穿靶数值模拟研究[J].含能材料, 2005, 13(4):222-224. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hncl200504006

    ZHANG Q P, CHEN G, QU M.Numerical study on the oblique perforation of targets by truncated conical warhead[J].Energetic Materials, 2005, 13(4):222-224. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hncl200504006
    [15] 黄涛, 吴卫国, 李晓彬, 等.截锥形弹体斜穿甲花瓣型破坏模型[J].振动与冲击, 2010, 29(2):125-127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdycj201002028

    HUANG T, WU W G, LI X B, et al.Oblique armor-piercing effect of a truncated cylindroconical projectile[J].Journal of Vibration and Shock, 2010, 29(2):125-127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdycj201002028
    [16] 徐双喜, 吴卫国, 李晓彬, 等.锥头弹小斜角侵彻薄板剩余速度理论分析[J].弹道学报, 2010, 22(3):58-62. http://www.cqvip.com/QK/92261X/201003/35442697.html

    XU S X, WU W G, LI X B, et al.Theoretical analysis on residual velocity of conical projectile after penetrating thin plate at low oblique angle[J].Journal of Ballistics, 2010, 22(3):58-62. http://www.cqvip.com/QK/92261X/201003/35442697.html
    [17] BAO Y B, WIERZBICKI T.On fracture locus in the equivalent strain and stress triaxiality space[J].International Journal of Mechanical Sciences, 2004, 46(1):81-98. doi: 10.1016/j.ijmecsci.2004.02.006
    [18] 肖新科. 双层金属靶的抗侵彻性能和Taylor杆的变形与断裂[D]. 哈尔滨: 哈尔滨工业大学, 2010. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D268956

    XIAO X K. The ballistic resistance of double-layered metallic target and deformation & fracture of Taylor rod[D]. Harbin: Harbin Institute of Technology, 2010. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D268956
    [19] 郭子涛, 高斌, 郭钊, 等. 基于J-C模型的Q235钢的动态本构关系研究[J]. 爆炸与冲击, 2018, 38(4)[2018-01-09]. http://www.bzycj.cn/CN/10.11883/bzycj-2016-0333.DOI:10.11883/bzycj-2016-0333.

    GUO Z T, GAO B, GUO Z, et al. Study on the J-C model based dynamic constitutive relation of Q235 steel[J]. Explosion and Shock Waves, 2018, 38(4)[2018-01-09]. http://www.bzycj.cn/CN/10.11883/bzycj-2016-0333.DOI:10.11883/bzycj-2016-0333.
    [20] 郭子涛. 弹体入水特性及不同介质中金属靶的抗侵彻性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D241209

    GUO Z T. Research on characteristics of projectile water entry and ballistic resistance of targets under different mediums[D]. Harbin: Harbin Institute of Technology, 2012. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D241209
    [21] RECHT R, IPSON T W.Ballistic perforation dynamics[J].Journal of Applied Mechanics, 1963, 30(3):384-390. doi: 10.1115/1.3636566
    [22] IPSON T W, RECHT R.Ballistic penetration resistance and its measurement[J].Experimental Mechanics, 1975, 15(7):249-257. doi: 10.1007/BF02318057
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  6580
  • HTML全文浏览量:  3056
  • PDF下载量:  218
出版历程
  • 收稿日期:  2018-01-09
  • 修回日期:  2018-01-28

目录

    /

    返回文章
    返回