An Improved Third-Order WENO-Z Scheme for Achieving Optimal Order near Critical Points and Its Application
-
摘要: 高精度、高分辨率激波捕捉格式对含激波流场的数值模拟具有重要意义。为了提高三阶WENO-Z格式在极值点处的计算精度,首先通过理论推导给出三阶WENO格式满足收敛精度的充分条件。采用泰勒级数展开的方式,推导确定所构造格式的参数。通过精度测试证明改进格式在光滑流场区域能收敛到三阶精度。选用Sod激波管、Rayleigh-Taylor不稳定性等经典算例证实了提出的改进格式WENO-NN3相较其他格式(WENO-SJ3、WENO-Z3和WENO-N3)具有精度高、耗散低、对流场结构分辨率高的特性。Abstract: A high-precision and resolution shock capturing scheme is of great significance for numerical simulation of the complex flow field containing shock waves.In this study, to improve the convergence accuracy of the conventional third-order WENO-Z scheme at the critical points, we firstly derived the sufficient conditions for satisfying the convergence precision of the third-order WENO scheme from the theoretical derivation, then determined the parameters of the constructed scheme using the Taylor series expansion for satisfying the sufficient conditions, and proved using the accuracy test that the proposed scheme converges to the third order precision in smooth flow field including the critical points.Furthermore, we selected the Sod shock tube, the Rayleigh-Taylor instability and some other classic examples, verifying that the improved scheme WENO-NN3 was capable of giving more precision and high resolution results of the complex flow field structures compared with other WENO schemes such as the WENO-JS3, WENO-Z3, and WENO-N3.
-
表 1 针对初始条件(37)式在计算时间t=2时不同数值计算格式L1误差和精度比较
Table 1. A comparative study of L1 (error and order) for different schemes with initial condition Eq.(37) at t=2
N WENO-JS3 WENO-Z3 WENO-N3 WENO-NN3 L1 (Error) L1 (Order) L1 (Error) L1 (Order) L1 (Error) L1 (Order) L1 (Error) L1 (Order) 25 1.242 9×10-1 5.727 6×10-2 4.825 4×10-2 2.595 4×10-2 50 4.605 0×10-2 1.432 4 1.511 6×10-2 1.921 9 1.131 5×10-2 2.092 4 3.796 1×10-3 2.773 4 100 1.301 0×10-2 1.823 6 3.464 5×10-3 2.125 4 2.554 9×10-3 2.146 9 4.660 5×10-4 3.026 0 200 1.513 2×10-3 3.103 9 8.372 1×10-4 2.049 0 4.980 9×10-4 2.358 8 4.865 7×10-5 3.259 8 400 1.461 8×10-4 3.371 8 1.682 3×10-4 2.315 2 1.006 7×10-4 2.306 8 6.294 1×10-6 2.950 6 -
[1] LIU X D, OSHER S, CHAN T.Weighted essentially non-oscillatory schemes[J].Journal of Computational Physics, 1994, 115(1):200-212. doi: 10.1006/jcph.1994.1187 [2] HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes (Ⅲ)//HUSSAINI M Y, VAN LEER B, VAN ROSENDALE J. Upwind and high-resolution schemes. Berlin, Heidelberg: Springer, 1987: 231-303. [3] JIANG G S, SHU C W.Efficient implementation of weighted ENO schemes[J].Journal of Computational Physics, 1995, 126(1):202-228. [4] HSIEH T J, WANG C H, YANG J Y.Numerical experiments with several variant WENO schemes for the Euler equations[J].International Journal for Numerical Methods in Fluids, 2010, 58(9):1017-1039. [5] ZHAO S, LARDJANE N, FEDIOUN I.Comparison of improved finite-difference WENO schemes for the implicit large eddy simulation of turbulent non-reacting and reacting high-speed shear flows[J].Computers & Fluids, 2014, 95(3):74-87. https://www.sciencedirect.com/science/article/pii/S0045793014000802 [6] WANG C, DING J X, SHU C W, LI T.Three-dimensional ghost-fluid large-scale numerical investigation on air explosion[J].Computers & Fluids, 2016, 137:70-79. https://www.sciencedirect.com/science/article/pii/S0045793016302353 [7] ZAGHI S, MASCIO A D, FAVINI B.Application of WENO-positivity-preserving schemes to highly under-expanded jets[J].Journal of Scientific Computing, 2016, 69(3):1-25. doi: 10.1007/s10915-016-0226-5.pdf [8] HENRICK A K, ASLAM T D, POWERS J M.Mapped weighted essentially non-oscillatory schemes:achieving optimal order near critical points[J].Journal of Computational Physics, 2005, 207(2):542-567. doi: 10.1016/j.jcp.2005.01.023 [9] BORGES R, CARMONA M, COSTA B, et al.An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J].Journal of Computational Physics, 2008, 227(6):3191-3211. doi: 10.1016/j.jcp.2007.11.038 [10] YAMALEEV N K, CARPENTER M H.A systematic methodology for constructing high-order energy stable WENO schemes[J].Journal of Computational Physics, 2009, 228:4248-4272. doi: 10.1016/j.jcp.2009.03.002 [11] CASTRO M, COSTA B, DON W S.High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws[J].Journal of Computational Physics, 2011, 230(5):1766-1792. doi: 10.1016/j.jcp.2010.11.028 [12] HA Y, KIM C H, LEE Y J, et al.An improved weighted essentially non-oscillatory scheme with a new smoothness indicator[J].Journal of Computational Physics, 2013, 232(1):68-86. doi: 10.1016/j.jcp.2012.06.016 [13] SHEN Y Q, ZHA G C.Improvement of weighted essentially non-oscillatory schemes near discontinuities[J].Computers & Fluids, 2014, 96(12):1-9. https://www.sciencedirect.com/science/article/pii/S0045793014000656 [14] CHANG H K, HA Y, YOON J.Modified non-linear weights for fifth-order weighted essentially non-oscillatory schemes[J].Journal of Computational Science, 2016, 67(1):299-323. doi: 10.1007/s10915-015-0079-3 [15] YAMALEEV N K, CARPENTER M H.Third-order energy stable WENO scheme[J].Journal of Computational Physics, 2013, 228(8):3025-3047. https://www.sciencedirect.com/science/article/pii/S002199910900014X [16] WU X S, ZHAO Y X.A high-resolution hybrid scheme for hyperbolic conservation laws[J].International Journal for Numerical Methods in Fluids, 2015, 78(3):162-187. doi: 10.1002/FLD.v78.3 [17] WU X, LIANG J, ZHAO Y.A new smoothness indicator for third-order WENO scheme[J].International Journal for Numerical Methods in Fluids, 2016, 81(7):451-459. doi: 10.1002/fld.v81.7 [18] DON W S, BORGES R.Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes[J].Journal of Computational Physics, 2013, 250(4):347-372. https://www.sciencedirect.com/science/article/pii/S0021999113003501 [19] HU X Y, WANG Q, ADAMS N A.An adaptive central-upwind weighted essentially non-oscillatory scheme[J].Journal of Computational Physics, 2010, 229(23):8952-8965. doi: 10.1016/j.jcp.2010.08.019 [20] SHU C W, OSHER S.Efficient implementation of essentially non-oscillatory shock-capturing schemes, Ⅱ[J].Journal of Computational Physics, 1989, 77(2):439-471. doi: 10.1007/978-3-642-60543-7_14.pdf [21] GANDE N R, RATHOD Y, RATHAN S.Third-order WENO scheme with a new smoothness indicator[J].International Journal for Numerical Methods in Fluids, 2017, 85(2):171-185. https://www.researchgate.net/publication/314137535_Third_order_WENO_scheme_with_a_new_smoothness_indicator [22] SOD G A.A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J].Journal of Computational Physics, 1978, 27(1):1-31. https://www.sciencedirect.com/science/article/pii/0021999178900232 [23] SHI J, ZHANG Y T, SHU C W.Resolution of high order WENO schemes for complicated flow structures[J].Journal of Computational Physics, 2003, 186(2):690-696. doi: 10.1016/S0021-9991(03)00094-9 [24] ACKER F, BORGES R, COSTA B.An improved WENO-Z scheme[J].Journal of Computational Physics, 2016, 313:726-753. doi: 10.1016/j.jcp.2016.01.038 [25] ZHANG P G, WANG J P.A newly improved WENO scheme and its application to the simulation of Richtmyer-Meshkov instability[J].Procedia Engineering, 2013, 61:325-332. doi: 10.1016/j.proeng.2013.08.023