一种提高极值点处精度的三阶WENO-Z改进格式及应用

徐维铮 吴卫国

徐维铮, 吴卫国. 一种提高极值点处精度的三阶WENO-Z改进格式及应用[J]. 高压物理学报, 2018, 32(3): 032302. doi: 10.11858/gywlxb.20170696
引用本文: 徐维铮, 吴卫国. 一种提高极值点处精度的三阶WENO-Z改进格式及应用[J]. 高压物理学报, 2018, 32(3): 032302. doi: 10.11858/gywlxb.20170696
XU Weizheng, WU Weiguo. An Improved Third-Order WENO-Z Scheme for Achieving Optimal Order near Critical Points and Its Application[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 032302. doi: 10.11858/gywlxb.20170696
Citation: XU Weizheng, WU Weiguo. An Improved Third-Order WENO-Z Scheme for Achieving Optimal Order near Critical Points and Its Application[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 032302. doi: 10.11858/gywlxb.20170696

一种提高极值点处精度的三阶WENO-Z改进格式及应用

doi: 10.11858/gywlxb.20170696
基金项目: 

装备预研教育部联合基金(青年人才) 6141A020331

国家自然科学基金 51409202

中央高校基本科研业务费 2016-YB-016

详细信息
    作者简介:

    徐维铮(1991-), 男, 博士, 主要从事爆炸波数值计算方法及程序开发研究.E-mail:xuweizheng@whut.edu.cn

    通讯作者:

    吴卫国(1960-), 男, 教授, 博士生导师, 主要从事结构动力学及舰船抗爆抗冲击研究.E-mail:mailjt@163.com

  • 中图分类号: O357.1

An Improved Third-Order WENO-Z Scheme for Achieving Optimal Order near Critical Points and Its Application

  • 摘要: 高精度、高分辨率激波捕捉格式对含激波流场的数值模拟具有重要意义。为了提高三阶WENO-Z格式在极值点处的计算精度,首先通过理论推导给出三阶WENO格式满足收敛精度的充分条件。采用泰勒级数展开的方式,推导确定所构造格式的参数。通过精度测试证明改进格式在光滑流场区域能收敛到三阶精度。选用Sod激波管、Rayleigh-Taylor不稳定性等经典算例证实了提出的改进格式WENO-NN3相较其他格式(WENO-SJ3、WENO-Z3和WENO-N3)具有精度高、耗散低、对流场结构分辨率高的特性。

     

  • 图  Sod激波管计算结束后密度曲线及其局部放大图

    Figure  1.  Density curve and partially enlarged detail at the final time for the Sod problem

    图  激波与熵波相互作用计算结束后密度曲线及其局部放大图

    Figure  2.  Density curve and partially enlarged detail at the final time for the Shu-Osher problem

    图  Rayleigh-Taylor不稳定性问题不同格式(WENO-JS3、WENO-Z3、WENO-N3、WENO-NN3)密度曲线图

    Figure  3.  Density contours of the Rayleigh-Taylor instability computed using WENO-JS3, WENO-Z3, WENO-N3, and WENO-NN3 schemes

    图  三模Richtmyer-Meshkov不稳定性初始条件设置

    Figure  4.  Initial condition of the treble-mode Richtmyer-Meshkov instability

    图  三模Richtmyer-Meshkov不稳定性问题不同格式(WENO-JS3、WENO-Z3、WENO-N3、WENO-NN3)密度曲线图

    Figure  5.  Density contours of the treble-mode Richtmyer-Meshkov instability computed using WENO-JS3, WENO-Z3, WENO-N3, and WENO-NN3 schemes

    表  1  针对初始条件(37)式在计算时间t=2时不同数值计算格式L1误差和精度比较

    Table  1.   A comparative study of L1 (error and order) for different schemes with initial condition Eq.(37) at t=2

    N WENO-JS3 WENO-Z3 WENO-N3 WENO-NN3
    L1 (Error) L1 (Order) L1 (Error) L1 (Order) L1 (Error) L1 (Order) L1 (Error) L1 (Order)
    25 1.242 9×10-1 5.727 6×10-2 4.825 4×10-2 2.595 4×10-2
    50 4.605 0×10-2 1.432 4 1.511 6×10-2 1.921 9 1.131 5×10-2 2.092 4 3.796 1×10-3 2.773 4
    100 1.301 0×10-2 1.823 6 3.464 5×10-3 2.125 4 2.554 9×10-3 2.146 9 4.660 5×10-4 3.026 0
    200 1.513 2×10-3 3.103 9 8.372 1×10-4 2.049 0 4.980 9×10-4 2.358 8 4.865 7×10-5 3.259 8
    400 1.461 8×10-4 3.371 8 1.682 3×10-4 2.315 2 1.006 7×10-4 2.306 8 6.294 1×10-6 2.950 6
    下载: 导出CSV
  • [1] LIU X D, OSHER S, CHAN T.Weighted essentially non-oscillatory schemes[J].Journal of Computational Physics, 1994, 115(1):200-212. doi: 10.1006/jcph.1994.1187
    [2] HARTEN A, ENGQUIST B, OSHER S, et al. Uniformly high order accurate essentially non-oscillatory schemes (Ⅲ)//HUSSAINI M Y, VAN LEER B, VAN ROSENDALE J. Upwind and high-resolution schemes. Berlin, Heidelberg: Springer, 1987: 231-303.
    [3] JIANG G S, SHU C W.Efficient implementation of weighted ENO schemes[J].Journal of Computational Physics, 1995, 126(1):202-228.
    [4] HSIEH T J, WANG C H, YANG J Y.Numerical experiments with several variant WENO schemes for the Euler equations[J].International Journal for Numerical Methods in Fluids, 2010, 58(9):1017-1039.
    [5] ZHAO S, LARDJANE N, FEDIOUN I.Comparison of improved finite-difference WENO schemes for the implicit large eddy simulation of turbulent non-reacting and reacting high-speed shear flows[J].Computers & Fluids, 2014, 95(3):74-87. https://www.sciencedirect.com/science/article/pii/S0045793014000802
    [6] WANG C, DING J X, SHU C W, LI T.Three-dimensional ghost-fluid large-scale numerical investigation on air explosion[J].Computers & Fluids, 2016, 137:70-79. https://www.sciencedirect.com/science/article/pii/S0045793016302353
    [7] ZAGHI S, MASCIO A D, FAVINI B.Application of WENO-positivity-preserving schemes to highly under-expanded jets[J].Journal of Scientific Computing, 2016, 69(3):1-25. doi: 10.1007/s10915-016-0226-5.pdf
    [8] HENRICK A K, ASLAM T D, POWERS J M.Mapped weighted essentially non-oscillatory schemes:achieving optimal order near critical points[J].Journal of Computational Physics, 2005, 207(2):542-567. doi: 10.1016/j.jcp.2005.01.023
    [9] BORGES R, CARMONA M, COSTA B, et al.An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J].Journal of Computational Physics, 2008, 227(6):3191-3211. doi: 10.1016/j.jcp.2007.11.038
    [10] YAMALEEV N K, CARPENTER M H.A systematic methodology for constructing high-order energy stable WENO schemes[J].Journal of Computational Physics, 2009, 228:4248-4272. doi: 10.1016/j.jcp.2009.03.002
    [11] CASTRO M, COSTA B, DON W S.High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws[J].Journal of Computational Physics, 2011, 230(5):1766-1792. doi: 10.1016/j.jcp.2010.11.028
    [12] HA Y, KIM C H, LEE Y J, et al.An improved weighted essentially non-oscillatory scheme with a new smoothness indicator[J].Journal of Computational Physics, 2013, 232(1):68-86. doi: 10.1016/j.jcp.2012.06.016
    [13] SHEN Y Q, ZHA G C.Improvement of weighted essentially non-oscillatory schemes near discontinuities[J].Computers & Fluids, 2014, 96(12):1-9. https://www.sciencedirect.com/science/article/pii/S0045793014000656
    [14] CHANG H K, HA Y, YOON J.Modified non-linear weights for fifth-order weighted essentially non-oscillatory schemes[J].Journal of Computational Science, 2016, 67(1):299-323. doi: 10.1007/s10915-015-0079-3
    [15] YAMALEEV N K, CARPENTER M H.Third-order energy stable WENO scheme[J].Journal of Computational Physics, 2013, 228(8):3025-3047. https://www.sciencedirect.com/science/article/pii/S002199910900014X
    [16] WU X S, ZHAO Y X.A high-resolution hybrid scheme for hyperbolic conservation laws[J].International Journal for Numerical Methods in Fluids, 2015, 78(3):162-187. doi: 10.1002/FLD.v78.3
    [17] WU X, LIANG J, ZHAO Y.A new smoothness indicator for third-order WENO scheme[J].International Journal for Numerical Methods in Fluids, 2016, 81(7):451-459. doi: 10.1002/fld.v81.7
    [18] DON W S, BORGES R.Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes[J].Journal of Computational Physics, 2013, 250(4):347-372. https://www.sciencedirect.com/science/article/pii/S0021999113003501
    [19] HU X Y, WANG Q, ADAMS N A.An adaptive central-upwind weighted essentially non-oscillatory scheme[J].Journal of Computational Physics, 2010, 229(23):8952-8965. doi: 10.1016/j.jcp.2010.08.019
    [20] SHU C W, OSHER S.Efficient implementation of essentially non-oscillatory shock-capturing schemes, Ⅱ[J].Journal of Computational Physics, 1989, 77(2):439-471. doi: 10.1007/978-3-642-60543-7_14.pdf
    [21] GANDE N R, RATHOD Y, RATHAN S.Third-order WENO scheme with a new smoothness indicator[J].International Journal for Numerical Methods in Fluids, 2017, 85(2):171-185. https://www.researchgate.net/publication/314137535_Third_order_WENO_scheme_with_a_new_smoothness_indicator
    [22] SOD G A.A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J].Journal of Computational Physics, 1978, 27(1):1-31. https://www.sciencedirect.com/science/article/pii/0021999178900232
    [23] SHI J, ZHANG Y T, SHU C W.Resolution of high order WENO schemes for complicated flow structures[J].Journal of Computational Physics, 2003, 186(2):690-696. doi: 10.1016/S0021-9991(03)00094-9
    [24] ACKER F, BORGES R, COSTA B.An improved WENO-Z scheme[J].Journal of Computational Physics, 2016, 313:726-753. doi: 10.1016/j.jcp.2016.01.038
    [25] ZHANG P G, WANG J P.A newly improved WENO scheme and its application to the simulation of Richtmyer-Meshkov instability[J].Procedia Engineering, 2013, 61:325-332. doi: 10.1016/j.proeng.2013.08.023
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  7605
  • HTML全文浏览量:  3668
  • PDF下载量:  214
出版历程
  • 收稿日期:  2017-12-29
  • 修回日期:  2018-02-11

目录

    /

    返回文章
    返回