Simulation of Two-Dimensional Multi-Material Compressible Flows Using Lagrangian Methods
-
摘要: 在用拉格朗日方法模拟二维多介质可压缩流体的运动时,网格发生大变形往往是模拟不能正常进行下去的重要原因。网格动态局域重分可以有效改善网格的畸变程度,使计算得以持续。针对三角形计算网格提出了一种新的动态局域重分方法,包含"对角线交换""长边劈裂""短边融合"和"帽子戏法"4种基本操作,其中前3种操作不仅作用于同种介质内部,还可将其拓展到多介质界面处,与"帽子戏法"一起处理界面附近的大变形网格。在网格动态局域重分后,将旧网格上的物理量映射到新网格上,先计算出新三角形的质量和内能,再根据动量守恒和能量守恒对新三角形的格点速度及内能进行修正。利用该方法对冲击波与气泡相互作用和R-T不稳定性问题进行了数值模拟,取得了良好的效果。在R-T不稳定性算例中,采用同种介质和不同介质两种模型进行对比,模拟结果验证了该方法的有效性。Abstract: When simulating the two-dimensional multi-material compressible flows using the Lagrangian method, the distortion of the mesh is often the reason why the process terminates.The dynamic local remeshing is an option to relax the distortion.In this study, we combined the "diagonal-swapping" "edge-splitting" "edge-merging" and "hat-trick" to deal with the distortive mesh.The 4 operations could act not only in single material, but also be extended to the multi-material interface to deal with the distortive mesh on the interface.After the remeshing, the quantities on the old mesh are projected onto the new one.During this process, the mass, momentum and energy are kept conservative.We verified the effectiveness and accuracy of this method by using it to simulate the shock/bubble interaction and the R-T instability.In the R-T instability simulation, the single material and the multi-material models are applied to prove that this method is able to deal with the distortive mesh both inside the material and on the interface.
-
图 1 交错网格型拉格朗日方法[10]
Figure 1. Staggered grid hydrodynamics Lagrangian discretization
-
[1] HIRT C W, AMSDEN A A, COOK J L.An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J].Journal of Computational Physics, 1974, 14(3):227-253. doi: 10.1016/0021-9991(74)90051-5 [2] ANBARLOOEI H R, MAZAHERI K.Moment of fluid interface reconstruction method in multi-material arbitrary Lagrangian Eulerian (MMALE) algorithms[J].Computer Methods in Applied Mechanics and Engineering, 2009, 198(47):3782-3794. https://www.deepdyve.com/lp/wiley/moment-of-fluid-interface-reconstruction-method-in-axisymmetric-Aki0sZlem3 [3] ZENG Q. MMALE numerical simulation for multi-material large deformation fluid flows[C]//Journal of Physics: Conference Series, 2014, 510: 012047. [4] LOUBRE R, MAIRE P H, SHASHKOV M J, et al.A reconnection-based arbitrary-Lagrangian-Eulerian method[J].Journal of Computational Physics, 2010, 229(12):4724-4761. doi: 10.1016/j.jcp.2010.03.011 [5] 田宝林, 刘妍, 申卫东, 等.可压缩多介质流动的整体ALE方法(GALE)[J].北京理工大学学报, 2010, 30(5):622-625. http://www.oalib.com/paper/4590079TIAN B L, LIU Y, SHEN W D, et al.Global arbitrary Lagrangian-Eulerian method for compressible multimaterial flows[J].Transactions of Beijing Institute of Technology, 2010, 30(5):622-625. http://www.oalib.com/paper/4590079 [6] BENSON D J.Volume of fluid interface reconstruction methods for multi-material problems[J].Applied Mechanics Reviews, 2002, 55(2):151-165. doi: 10.1115/1.1448524 [7] DYADECHKO V, SHASHKOV M.Reconstruction of multi-material interfaces from moment data[J].Journal of Computational Physics, 2008, 227(11):5361-5384. doi: 10.1016/j.jcp.2007.12.029 [8] LIU J.A second-order changing-connectivity ALE scheme and its application to FSI with large convection of fluids and near contact of structures[J].Journal of Computational Physics, 2016, 304:380-423. doi: 10.1016/j.jcp.2015.10.015 [9] WICKE M, RITCHIE D, KLINGNER B M, et al.Dynamic local remeshing for elastoplastic simulation[J].ACM Transactions on Graphics, 2010, 29(4):1-11. http://graphics.berkeley.edu/papers/Wicke-DLR-2010-07/ [10] 王瑞利, 林忠, 魏兰.针对流体大变形问题网格邻域可变技术[J].计算物理, 2011, 28(4):501-506. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jswl201104005WANG R L, LIN Z, WEI L.Reconnection-based Lagrangian-local remeshing method for large deformations[J].Chinese Journal of Computational Physics, 2011, 28(4):501-506. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jswl201104005 [11] STÉPHANE D P.Metric-based mesh adaptation for 2D Lagrangian compressible flows[J].Journal of Computational Physics, 2011, 230(5):1793-1821. doi: 10.1016/j.jcp.2010.11.030 [12] BARLOW A J, MAIRE P H, RIDER W J, et al.Arbitrary Lagrangian-Eulerian methods for modeling high-speed compressible multimaterial flows[J].Journal of Computational Physics, 2016, 322:603-665. doi: 10.1016/j.jcp.2016.07.001 [13] HAAS J F, STURTEVANT B.Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J].Journal of Fluid Mechanics, 1987, 181:41-76. doi: 10.1017/S0022112087002003