落锤冲击下钢筋混凝土梁响应及破坏的数值模拟

宋敏 王志勇 闫晓鹏 王志华

宋敏, 王志勇, 闫晓鹏, 王志华. 落锤冲击下钢筋混凝土梁响应及破坏的数值模拟[J]. 高压物理学报, 2018, 32(3): 034102. doi: 10.11858/gywlxb.20170693
引用本文: 宋敏, 王志勇, 闫晓鹏, 王志华. 落锤冲击下钢筋混凝土梁响应及破坏的数值模拟[J]. 高压物理学报, 2018, 32(3): 034102. doi: 10.11858/gywlxb.20170693
SONG Min, WANG Zhiyong, YAN Xiaopeng, WANG Zhihua. Numerical Simulation of Responses and Failure Modes of Reinforced Concrete Beams under Drop-Weight Impact Loadings[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 034102. doi: 10.11858/gywlxb.20170693
Citation: SONG Min, WANG Zhiyong, YAN Xiaopeng, WANG Zhihua. Numerical Simulation of Responses and Failure Modes of Reinforced Concrete Beams under Drop-Weight Impact Loadings[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 034102. doi: 10.11858/gywlxb.20170693

落锤冲击下钢筋混凝土梁响应及破坏的数值模拟

doi: 10.11858/gywlxb.20170693
基金项目: 

国家自然科学基金 11702186

国家自然科学基金 11390362

山西省应用基础研究项目 201701D221010

山西省"1331工程"重点创新团队 

详细信息
    作者简介:

    宋敏(1991—), 男, 硕士研究生, 主要从事冲击动力学、断裂力学研究.E-mail:songmin595@163.com

    通讯作者:

    闫晓鹏(1976—), 男, 博士, 副教授, 主要从事塑性动力学研究.E-mail:yan.xiaopeng@qq.com

  • 中图分类号: O346.5

Numerical Simulation of Responses and Failure Modes of Reinforced Concrete Beams under Drop-Weight Impact Loadings

  • 摘要: 钢筋混凝土在动态冲击下表现出与静态加载不同的结构响应,且破坏模式更为复杂。在钢筋三折线本构模型中引入应变率效应,利用ABAQUS显式动力分析模块,对钢筋混凝土梁在不同高度冲击下的结构响应进行了数值模拟。得到的冲击力和跨中挠度时程曲线与实验结果吻合较好,验证了模型的有效性。基于该模型,研究了配筋率分别为2.56%、2.66%和2.76%时,钢筋混凝土梁在不同冲击速度下的结构响应。结果表明:增大配筋率能够提高梁的承载能力;随冲击速度的增大,配筋率对梁抗变形能力的增强效果逐渐减弱;当冲击速度为4.85 m/s时,配筋率对梁破坏模式的影响微弱;当冲击速度大于4.85 m/s时,随配筋率的减小,破坏模式由剪切破坏转变为弯曲破坏。

     

  • 图  梁尺寸及配筋截面图(单位:mm)

    Figure  1.  Beam size and reinforcement section (Unit: mm)

    图  有限元模型

    Figure  2.  Finite element model

    图  冲击速度为9.60 m/s时的冲击力时程曲线

    Figure  3.  Time history curves of the impact forces at v=9.60 m/s

    图  不同冲击速度下的跨中挠度曲线

    Figure  4.  Time history curves of the mid-point deflection at different impact velocities

    图  不同冲击速度下冲击力-跨中挠度曲线

    Figure  5.  Time history curves of impact relative to mid-point deflection at different velocities

    图  梁的损伤破坏状况

    Figure  6.  Damage and failure of beams at different falling heights

    图  不同配筋率梁在不同冲击速度下的冲击力时程曲线

    Figure  7.  Time history curves of impact force for reinforced beams with different reinforcement ratios at different impact velocities

    图  不同配筋率梁在不同冲击速度下的跨中挠度时程曲线

    Figure  8.  Deflection time curves of beams with different reinforcement ratios at different impact velocities

    图  不同配筋率梁在不同冲击速度下的冲击力-跨中挠度曲线

    Figure  9.  Impact loading-mid-point displacement curves for beams with different reinforcement ratios at different impact velocities

    表  1  混凝土模型参数[15]

    Table  1.   Parameters of concrete[15]

    Dilation angle/(°) Eccentricity fb0/fc0 K Viscosityparameter Density/(kg·m-3) E/GPa ν
    30 0.1 1.16 0.666 7 0.000 5 2 400 26.48 0.167
    下载: 导出CSV

    表  2  钢筋参数[16]

    Table  2.   Parameter of steel model[16]

    Reinforced grades Diameter/mm ρ/(kg·m-3) E/GPa ν Yield strength/MPa Ultimate strength/MPa
    HPB235 8 7 862 210 0.3 400 540
    HRB335 10 7 860 200 0.3 438 687
    HRB335 12 7 850 200 0.3 438 687
    下载: 导出CSV

    表  3  模拟与实验结果对比

    Table  3.   Comparison of results between FEM and experiment

    Method Drop height (m)/Mass (kg) Impact velocity/(m·s-1) Maximum impact force/kN Maximum deflection of mid-point/mm
    Experiment 1.2/124 104.0 28.3
    FEM -/124 4.85 149.1 30.7
    Experiment 2.4/124 94.7 51.2
    FEM -/124 6.86 134.7 56.5
    Experiment 4.8/124 173.9 90.4
    FEM -/124 9.60 181.2 102.9
    下载: 导出CSV

    表  4  冲击力峰值结果对比

    Table  4.   Comparison of the results of maximum impact force

    Impact velocity/(m·s-1) Reinforcement ratio:2.56% Reinforcement ratio:2.66% Reinforcement ratio:2.76%
    Max. impact force/kN Time/ms Max. impact force/kN Time/ms Max. impact force/kN Time/ms
    4.85 114 0.66 149(+30.0%) 0.6 170(+49.0%) 0.5
    6.86 125 0.50 134(+7.2%) 0.5 201(+60.8%) 0.4
    9.60 169 0.33 181(+7.1%) 0.3 222(+31.3%) 0.3
    下载: 导出CSV

    表  5  跨中位移峰值结果对比

    Table  5.   Comparison of results of maximum mid-point deflection

    Impact velocity/(m·s-1) Reinforcement ratio:2.56% Reinforcement ratio:2.66% Reinforcement ratio:2.76%
    Max. deflection/mm Time/ms Max. deflection/mm Time/ms Max. deflection/mm Time/ms
    4.85 38.26 16.0 31.72(-17.10%) 13.32 27.70(-27.60%) 12.3
    6.86 68.15 25.5 56.56(-17.00%) 17.30 49.73(-27.03%) 15.6
    9.60 120.33 26.0 102.94(-14.43%) 25.00 91.37(-24.07%) 21.0
    下载: 导出CSV
  • [1] OŽBOLT J, RAH K K, MEŠTROVIĈD.Influence of loading rate on concrete cone failure[J].International Journal of Fracture, 2006, 139(2):239-252. doi: 10.1007/s10704-006-0041-3
    [2] TRAVAŠ V, OŽBOLT J, KOŽAR I.Failure of plain concrete beam at impact load:3D finite element analysis[J].International Journal of Fracture, 2009, 160(1):31-41. doi: 10.1007/s10704-009-9400-1
    [3] 付应乾, 董新龙.落锤冲击下钢筋混凝土梁响应及破坏的实验研究[J].中国科学:技术科学, 2016, 46(4):400-406. doi: 10.1360/N092015-00337

    FU Y Q, DONG X L.An experimental study on impact response and failure behavior of reinforced concrete beam[J].Scientia Sinica:Technological, 2016, 46(4):400-406. doi: 10.1360/N092015-00337
    [4] SAATCI S, VECCHIO F J.Effects of shear mechanisms on impact behavior of reinforced concrete beams[J].ACI Structural Journal, 2009, 106(1):78-86.
    [5] ZHAN T, WANG Z, NING J.Failure behaviors of reinforced concrete beams subjected to high impact loading[J].Engineering Failure Analysis, 2015, 56:233-243. doi: 10.1016/j.engfailanal.2015.02.006
    [6] ZINEDDIN M, KRAUTHAMMER T.Dynamic response and behavior of reinforced concrete slabs under impact loading[J].International Journal of Impact Engineering, 2007, 34(9):1517-1534. doi: 10.1016/j.ijimpeng.2006.10.012
    [7] 范向前, 胡少伟.不同配筋率对钢筋混凝土三点弯曲梁断裂韧度的影响[J].水电能源科学, 2013, 31(12):117-121. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sdny201312031&dbname=CJFD&dbcode=CJFQ

    FAN X Q, HU S W.Effects of various reinforcement ratio on fracture toughness of reinforced concrete for three-points bending beams[J].Water Resources and Power, 2013, 31(12):117-121. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=sdny201312031&dbname=CJFD&dbcode=CJFQ
    [8] 沈培峰.配筋率对混凝土断裂参数的影响[J].防灾减灾工程学报, 2013, 33(2):235-240. https://www.researchgate.net/profile/Shaowei_Hu/publication/272609888_Influence_of_Reinforcement_Ratios_on_Concrete_Fracture_Parameters/links/57e1083508ae52b3078c57fe.pdf?origin=publication_list

    SHEN P F.Influence of reinforcement ratio on concrete fracture parameters[J].Journal of Disaster Prevention and Mitigation Engineering, 2013, 33(2):235-240. https://www.researchgate.net/profile/Shaowei_Hu/publication/272609888_Influence_of_Reinforcement_Ratios_on_Concrete_Fracture_Parameters/links/57e1083508ae52b3078c57fe.pdf?origin=publication_list
    [9] BANTHIA N, MINDESS S, BENTUR A, et al.Impact testing of concrete using a drop-weight impact machine[J].Experimental March, 1989, 29(1):63-69. doi: 10.1007/BF02327783
    [10] RAO M C, BHATTACHARYYA S K, BARAI S V.Behaviour of recycled aggregate concrete under drop weight impact load[J].Construction and Building Materials, 2011, 25(1):69-80. doi: 10.1016/j.conbuildmat.2010.06.055
    [11] 任晓虎, 霍静思, 陈柏生.火灾下钢管混凝土梁落锤冲击试验研究[J].振动与冲击, 2012, 30(20):110-115. https://www.researchgate.net/profile/Jingsi_Huo2/publication/289149807_Anti-impact_behavior_of_concrete-filled_steel_tubular_beams_in_fire/links/5763f27f08ae1658e2ea2074.pdf?origin=publication_detail

    REN X H, HUO J S, CHEN B S.Anti-impact behavior of concrete-filled steel tubular beams in fire[J].Journal of Vibration and Shock, 2012, 30(20):110-115. https://www.researchgate.net/profile/Jingsi_Huo2/publication/289149807_Anti-impact_behavior_of_concrete-filled_steel_tubular_beams_in_fire/links/5763f27f08ae1658e2ea2074.pdf?origin=publication_detail
    [12] 展婷变, 宁建国, 王志华.冲击载荷下钢筋混凝土力学行为的研究[J].高压物理学报, 2016, 30(2):109-115. doi: 10.11858/gywlxb.2016.02.004

    ZHAN T B, NING J G, WANG Z H.Mechanical behavior of reinforced concrete under dynamic loading[J].Chinese Journal of High Pressure Physics, 2016, 30(2):109-115. doi: 10.11858/gywlxb.2016.02.004
    [13] 李敏, 李宏男.钢筋混凝土梁动态试验与数值模拟[J].振动与冲击, 2015, 34(6):110-115. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201506021.htm

    LI M, LI H N.Dynamic tests and numerical simulation of reinforced concrete beams[J].Journal of Vibration and Shock, 2015, 34(6):110-115. http://www.cnki.com.cn/Article/CJFDTotal-ZDCJ201506021.htm
    [14] JIANG H, WANG X, HE S.Numerical simulation of impact tests on reinforced concrete beams[J].Materials and Design, 2012, 39(15):111-120. https://www.sciencedirect.com/science/article/pii/S0261306912000751
    [15] 刘巍, 徐明, 陈忠范.ABAQUS混凝土损伤塑性模型参数标定及验证[J].工业建筑, 2014(增刊1):167-171. http://www.docin.com/p-1535116684.html

    LIU W, XU M, CHEN Z F.Parameters calibration and verification of concrete damage plasticity model of ABAQUS[J].Industrial Construction, 2014(Suppl 1):167-171. http://www.docin.com/p-1535116684.html
    [16] 林峰, 顾祥林, 匡昕昕, 等.高应变率下建筑钢筋的本构模型[J].建筑材料学报, 2008, 11(1):14-20. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_jzclxb200801003

    LIN F, GU X L, KUANG X X, et al.Constitutive models for reinforcing steel bars under high strain rates[J].Journal of Building Materials, 2008, 11(1):14-20. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_jzclxb200801003
    [17] 中国建筑科学研究院. 混凝土设计规范: GB 50010-2010[S]. 北京: 中国建筑工业出版社, 2010.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  8564
  • HTML全文浏览量:  3612
  • PDF下载量:  478
出版历程
  • 收稿日期:  2017-12-12
  • 修回日期:  2018-02-09

目录

    /

    返回文章
    返回