模拟舱室内部气云爆炸载荷的不同精度WENO格式比较

徐维铮 吴卫国

徐维铮, 吴卫国. 模拟舱室内部气云爆炸载荷的不同精度WENO格式比较[J]. 高压物理学报, 2018, 32(4): 042302. doi: 10.11858/gywlxb.20170689
引用本文: 徐维铮, 吴卫国. 模拟舱室内部气云爆炸载荷的不同精度WENO格式比较[J]. 高压物理学报, 2018, 32(4): 042302. doi: 10.11858/gywlxb.20170689
XU Weizheng, WU Weiguo. Comparisons of Different Precision WENO Schemes for Simulating Blast Load of Gas Cloud Explosion inside a Cabin[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 042302. doi: 10.11858/gywlxb.20170689
Citation: XU Weizheng, WU Weiguo. Comparisons of Different Precision WENO Schemes for Simulating Blast Load of Gas Cloud Explosion inside a Cabin[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 042302. doi: 10.11858/gywlxb.20170689

模拟舱室内部气云爆炸载荷的不同精度WENO格式比较

doi: 10.11858/gywlxb.20170689
基金项目: 

装备预研教育部联合基金(青年人才) 6141A020331

国家自然科学基金 51409202

中央高校基本科研业务费 2016-YB-016

详细信息
    作者简介:

    徐维铮(1991-), 男, 博士研究生, 主要从事束空间内炸药爆炸场高精度数值计算方法及三维程序开发研究.E-mail:xuweizheng@whut.edu.cn

  • 中图分类号: O381

Comparisons of Different Precision WENO Schemes for Simulating Blast Load of Gas Cloud Explosion inside a Cabin

  • 摘要: 为了研究加权本质无振荡(WENO)格式精度对舱室内部气云爆炸载荷的影响规律,基于FORTRAN平台,采用三、五、七、九阶WENO格式,开发了高精度舱室内部气云爆炸三维数值计算程序。选用Sod激波管、激波与熵波相互作用两个经典算例验证了程序编写的可靠性,并初步考察了不同精度WENO格式的计算性能。采用已验证的程序开展了封闭舱室和泄压舱室内部球体气云爆炸的数值模拟,并探讨了WENO格式精度对爆炸载荷的影响规律。研究表明:舱室内部气云爆炸载荷主要包含瞬态冲击波和持续时间较长的准静态超压;WENO格式精度对冲击波载荷影响较大,高阶格式给出更陡峭的峰值,而对形成的准静态超压影响较小。

     

  • 图  Sod激波管算例密度曲线及其局部放大图

    Figure  1.  Density curve and its partially enlarged details for Sod shock tube

    图  激波与熵波相互作用算例密度曲线及其局部放大图

    Figure  2.  Density curve and its partially enlarged details for shock-entropy wave interaction

    图  封闭舱室和泄压舱室及其测点分布(单位:mm)

    Figure  3.  Closed cabin and venting cabin and their gauging points (Unit:mm)

    图  爆炸初场及网格分布

    Figure  4.  Initial condition and mesh distribution

    图  舱室内爆炸超压时间历程曲线

    Figure  5.  Overpressure histories of all the gauging points inside the cabin

    图  不同精度WENO格式下封闭舱室内气云爆炸测点No.1处的超压时间历程曲线

    Figure  6.  Overpressure histories at gauging point No.1 for different schemes in closed cabin

    图  不同精度WENO格式下封闭舱室内气云爆炸测点No.1处的超压比较及其局部放大图

    Figure  7.  Comparison of overpressure at gauging point No.1 for different schemes in closed cabin and its partially enlarged details

    图  不同精度WENO格式下泄压舱室内气云爆炸测点No.1处的超压时间历程曲线

    Figure  8.  Overpressure histories at gauging point No.1 for different schemes in venting cabin

    图  不同精度WENO格式下泄压舱室内气云爆炸测点No.1处的超压比较及其局部放大图

    Figure  9.  Comparison of overpressure at gauging point No.1 for different schemes in venting cabin and its partially enlarged details

  • [1] 徐胜利, 汤明钧, 糜仲春.近地空中气云爆炸波遇地面反射的研究[J].爆炸与冲击, 1996, 16(4):298-304. http://www.cqvip.com/QK/94778X/1996004/2291573.html

    XU S L, TANG M J, MI Z C.Studies on reflection of blast waves for symmetric cloud explosion close to the ground[J].Explosion and Shock Waves, 1996, 16(4):298-304. http://www.cqvip.com/QK/94778X/1996004/2291573.html
    [2] 徐胜利, 彭金华.多爆源云雾爆炸波相互作用的三维数值研究[J].爆炸与冲击, 2000, 20(1):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj200001001

    XU S L, PENG J H.Three dimensional computaion on the interaction of blast waves generated by multi-sources of FAE[J].Explosion and Shock Waves, 2000, 20(1):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj200001001
    [3] 岳鹏涛, 彭金华.FAE爆炸波对地面目标作用的三维数值研究[J].爆炸与冲击, 2000, 20(2):97-102. http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200002000.htm

    YUE P T, PENG J H.3D numerical simulations on the interaction between FAE blast waves and ground targets[J].Explosion and Shock Waves, 2000, 20(2):97-102. http://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200002000.htm
    [4] 陈明生, 李建平, 白春华.非圆截面云雾爆炸超压场数值模拟[J].含能材料, 2015, 23(5):484-489. doi: 10.11943/j.issn.1006-9941.2015.05.015

    CHEN M S, LI J P, BAI C H.Simulation of explosion overpressure distribution for non-circular cross-section cloud[J].Chinese Journal of Energetic Materials, 2015, 23(5):484-489. doi: 10.11943/j.issn.1006-9941.2015.05.015
    [5] LIU X D, OSHER S, CHAN T.Weighted essentially non-oscillatory schemes[J].Journal of Computational Physics, 1994, 115(1):200-212. doi: 10.1006/jcph.1994.1187
    [6] JIANG G S, SHU C W.Efficient implementation of weighted ENO schemes[J].Journal of Computational Physics, 1996, 126(1):202-202. doi: 10.1006/jcph.1996.0130
    [7] SHU C W.Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws[M].Heidelberg:Springer Berlin Heidelberg, 1998:325-432.
    [8] SHU C W.High order weighted essentially nonoscillatory schemes for convection dominated problems[J].Siam Review, 2009, 51(1):82-126. doi: 10.1137/070679065
    [9] BALSARA D S, SHU C W.Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy[J].Journal of Computational Physics, 2000, 160(2):405-452. doi: 10.1006/jcph.2000.6443
    [10] SHU C W, OSHER S.Efficient implementation of essentially non-oscillatory shock-capturing schemes[J].Journal of Computational Physics, 1988, 77(2):439-471. doi: 10.1016/0021-9991(88)90177-5
    [11] SOD G A.A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J].Journal of Computational Physics, 1978, 27(1):1-31. http://www.sciencedirect.com/science/article/pii/0021999178900232
    [12] 赵衡阳.气体和粉尘爆炸原理[M].北京:北京理工大学出版社, 1996.

    ZHAO H Y.Principle of gas and dust explosion[M].Beijing:Beijing Institute of Technology Press, 1996.
    [13] 王建, 段吉员, 黄文斌, 等.乙炔-氧气混合气体强爆轰参数的理论估算与实验研究[J].高压物理学报, 2011, 25(4):365-369. http://www.gywlxb.cn/CN/abstract/abstract1386.shtml

    WANG J, DUAN J Y, HUANG W B, et al.Calculation and experiment of overdriven detonation parameters of C2H2-O2 mixture[J].Chinese Journal of High Pressure Physics, 2011, 25(4):365-369. http://www.gywlxb.cn/CN/abstract/abstract1386.shtml
    [14] 徐维铮, 吴卫国.泄压口大小对约束空间爆炸准静态超压载荷的影响规律[J].高压物理学报, 2017, 31(5):619-628. doi: 10.11858/gywlxb.2017.05.016

    XU W Z, WU W G.Effects of size of venting holes on the characteristics of quasi-static overpressure in confined space[J].Chinese Journal of High Pressure Physics, 2017, 31(5):619-628. doi: 10.11858/gywlxb.2017.05.016
  • 加载中
图(9)
计量
  • 文章访问数:  7065
  • HTML全文浏览量:  3089
  • PDF下载量:  200
出版历程
  • 收稿日期:  2017-12-07
  • 修回日期:  2017-12-19

目录

    /

    返回文章
    返回