温压炸药水中爆炸的后燃反应研究

冯凇 饶国宁 彭金华 王伯良

冯凇, 饶国宁, 彭金华, 王伯良. 温压炸药水中爆炸的后燃反应研究[J]. 高压物理学报, 2018, 32(3): 035204. doi: 10.11858/gywlxb.20170688
引用本文: 冯凇, 饶国宁, 彭金华, 王伯良. 温压炸药水中爆炸的后燃反应研究[J]. 高压物理学报, 2018, 32(3): 035204. doi: 10.11858/gywlxb.20170688
FENG Song, RAO Guoning, PENG Jinhua, WANG Boliang. Afterburning Reaction of Thermobaric Explosive by Underwater Explosion[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035204. doi: 10.11858/gywlxb.20170688
Citation: FENG Song, RAO Guoning, PENG Jinhua, WANG Boliang. Afterburning Reaction of Thermobaric Explosive by Underwater Explosion[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035204. doi: 10.11858/gywlxb.20170688

温压炸药水中爆炸的后燃反应研究

doi: 10.11858/gywlxb.20170688
基金项目: 

国家自然科学基金青年基金 11102091

高等学校博士学科点专项科研博导类基金 20113219110010

详细信息
    作者简介:

    冯凇(1989-), 男, 博士, 主要从事含铝炸药水下爆炸研究.E-mail:fs8500@126.com

    通讯作者:

    饶国宁(1978-), 男, 博士, 讲师, 主要从事爆炸力学研究.E-mail:njraoguoning@126.com

  • 中图分类号: TQ560.1;O389

Afterburning Reaction of Thermobaric Explosive by Underwater Explosion

  • 摘要: 为了研究温压炸药的后燃反应,采用双层容器充气装置,通过水下爆炸实验,计算了温压炸药的冲击波能、气泡能。通过对温压炸药的水下爆炸能量输出结构的研究,计算得到了不同气体氛围下的后燃反应释放能量。作为对比参照,在相同实验条件下,对TNT进行同等实验研究,结果表明:在2.5 MPa氧气环境下,铝粉含量为40%时,温压炸药的比冲击波能最大,当铝粉含量为50%时,温压炸药的比气泡能与总比能量最大,分别为同等实验条件下1.99倍、1.62倍、1.55倍TNT当量;随着气体中含氧量的增大,后燃效应增强,TNT在氧气中的后燃值是空气中的1.94倍,温压炸药在氧气中的后燃值是空气中的2.70倍。

     

  • 图  试验装置示意图(单位:mm)

    Figure  1.  Sketch of the experimental device (Unit:mm)

    图  试验装置实物图

    Figure  2.  Actual experimental device

    图  实验布局示意图

    Figure  3.  Sketch of experimental arrangement

    图  铝含量为50%温压炸药的冲击波与气泡脉动压力时程曲线

    Figure  4.  Shock wave and bubble pulse pressure histories of thermobaric explosive with aluminum powder content of 50%

    图  不同铝粉含量温压炸药的能量参数比当量

    Figure  5.  TNT equivalent of energy parameter ratio of thermobaric explosives with different aluminum contents

    表  1  空白样的水下爆炸能量输出结果

    Table  1.   Results of underwater explosion energy output of a blank sample

    No. pm/MPa θ/μs Tb/ms Es/kJ Eb/kJ et/(kJ·g-1)
    1 4.74 32.53 76.68 29.65 74.33 4.80
    2 4.83 32.53 77.98 30.98 78.18 5.03
    Average 4.79 32.53 77.33 30.32 76.26 4.92
      Notes:μ=2.3,Kf =1.03.
    下载: 导出CSV

    表  2  TNT不同气氛下能量输出特性

    Table  2.   Energy output of TNT in different atmospheres

    No. Gas Pressure/MPa pm/MPa Tb/ms es/(kJ·g-1) eb/(kJ·g-1) et/(kJ·g-1)
    1 Air 5.1 6.01 202.56 0.57 5.34 6.70
    2 Air 0.1 5.64 129.95 0.19 1.54 1.89
    3 Bared Charge 9.64 151. 43 0.82 2.43 4.09
    4 Ar 2.5 7 22 153.69 0.25 2.54 3.35
    5 Ar 5.1 5.68 175.43 0.35 3.45 4.04
    6 O2 2.5 7.12 209.57 0.57 7.07 8.48
    7 O2 5.1 6.13 235.26 0.73 7.35 9.19
      Notes:μ=2.015,Kf=1.034.
    下载: 导出CSV

    表  3  温压炸药在不同压力氧气氛围下能量输出特性

    Table  3.   Energy output of thermobaric explosives under different pressures of oxygenic atmosphere

    WAl/% Gas Pressure/MPa pm/MPa Tb/ms es/(kJ·g-1) eb/(kJ.g-1) et/(kJ·g-1
    50 O2 1.2 5.60 224.18 0.52 8.43 10.56
    50 O2 2.50 5.22 245.65 0.59 11.450 13.15
    50 O2 5.1 4.89 256.63 0.77 12.16 14.19
      Notes:μ=2.203,Kf=1.029.
    下载: 导出CSV

    表  4  温压炸药不同气氛下能量输出特性

    Table  4.   Energy output of thermobaric explosives in different atmospheres

    WAl/% Gas Pressure/MPa pm/MPa Tb/ms es/(kJ·g-1 eb/(kJ·g-1 et/(kJ·g-1)
    40 Ar 2.5 5.84 170.77 0.39 4.09 5.37
    40 Air 2.5 5.25 196.83 0.54 6.19 7.70
    40 O2 2.5 6.05 238.63 1.13 10.16 12.19
      Notes:μ=2.307,Kf=1.03.
    下载: 导出CSV

    表  5  温压炸药在相同压力氧气气氛下能量输出特性

    Table  5.   Energy output of thermobaric explosives under the same pressure of oxygenic atmosphere

    wAl/% Gas Pressure/MPa pm/MPa Tb/ms es/(kJ·g-1) eb/(kJ·g-1) et/(kJ·g-1)
    20 O2 2.5 6.71 223.20 0.67 8.40 10.31
    30 O2 2.5 6.39 224.96 0.76 8.74 10.79
    40 O2 2.5 6.05 238.63 1.13 10.16 12.19
    50 O2 2.5 5.22 245.65 0.59 11.45 13.15
    60 O2 2.5 4.77 238.50 0.39 10.16 11.29
    TNT O2 2.5 7.12 209.57 0.57 7.07 8.49
    下载: 导出CSV

    表  6  TNT在不同气氛下后燃反应所释放的能量

    Table  6.   Energy released by afterburning reaction of TNT in different atmospheres

    Gas Pressure/MPa Oxygen content/g Q/(kJ·g-1)
    Air 5.1 85.17 2.66
    O2 5.1 403.75 5.15
    下载: 导出CSV

    表  7  温压炸药在不同气氛下后燃反应所释放的能量

    Table  7.   Energy released by afterburning reaction of thermobaric explosive in different atmospheres

    Gas Pressure/MPa Oxygen content/g Q/(kJ·g-1)
    Air 2.5 41.75 2.33
    O2 2.5 197.92 6.82
    下载: 导出CSV
  • [1] XING X L, ZHAO S X, WANG Z Y, et al.Discussions on thermobaric explosives (TBXs)[J].Propellants Explosives Pyrotechnics, 2014, 39(1):14-17. doi: 10.1002/prep.v39.1
    [2] SIMIC D, POPOVIC M, SIROVATKA R, et al.Influence of cast composite thermobaric explosive compositions on air shock wave parameters[J].Scientific Technical Review, 2013, 63(2):63-69. https://www.researchgate.net/profile/Danica_Simic/publication/317239621_Influence_of_Cast_Composite_Thermobaric_Explosive_Compositions_on_Air_Shock_Wave_Parameters/links/592dd7bc0f7e9beee732e5f4/Influence-of-Cast-Composite-Thermobaric-Explosive-Compositions-on-Air-Shock-Wave-Parameters.pdf
    [3] 李芝绒, 王胜强, 殷俊兰.不同气体环境中温压炸药爆炸特性的试验研究[J].火炸药学报, 2013, 36(3):59-61. http://www.cqvip.com/QK/90400B/201303/46416116.html

    LI Z R, WANG S Q, YIN J L.Experiment study of blast performance of thermobaric explosive under different gas environment[J].Chinese Journal of Explosives & Propellants, 2013, 36(3):59-61. http://www.cqvip.com/QK/90400B/201303/46416116.html
    [4] KIM C K, LAI M C, ZHANG Z C, et al.Modeling and numerical simulation of afterburning of thermobaric explosives in a closed chamber[J].International Journal of Precision Engineering & Manufacturing, 2017, 18(7):979-986. doi: 10.1007/s12541-017-0115-3
    [5] 王晓峰, 冯晓军.温压炸药设计原则探讨[J].含能材料, 2016, 24(5):418-420. doi: 10.11943/j.issn.1006-9941.2016.05.00X

    WANG X F, FENG X J.Discussion on the design principle of thermobaric explosives[J].Chinese Journal of Energetic Materials, 2016, 24(5):418-420. doi: 10.11943/j.issn.1006-9941.2016.05.00X
    [6] 阚金玲, 刘家骢.一次引爆云爆剂的爆炸特性-后燃反应对爆炸威力的影响[J].爆炸与冲击, 2006, 26(5):404-409. doi: 10.11883/1001-1455(2006)05-0404-06

    KAN J L, LIU J C.The blast characteristic of SEFAE-effect of after-burning on blast power[J].Explosion and Shock Waves, 2006, 26(5):404-409. doi: 10.11883/1001-1455(2006)05-0404-06
    [7] 郑波, 陈力, 丁雁生, 等.温压炸药爆炸抛撒的运动规律[J].爆炸与冲击, 2008, 28(5):433-437. doi: 10.11883/1001-1455(2008)05-0433-05

    ZHENG B, CHEN L, DING Y S, et al.Dispersal process of explosion production of thermobaric explosive[J].Explosion and Shock Waves, 2008, 28(5):433-437. doi: 10.11883/1001-1455(2008)05-0433-05
    [8] DEWEY J M. The air velocity in blast waves from TNT explosions[C]//Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1964, 279(1378): 366-385. http://rspa.royalsocietypublishing.org/content/279/1378/366
    [9] KICINSKI W, TRZCINSKI W A.Calorimetry studies of explosion heat of non-ideal explosives[J].Journal of Thermal Analysis & Calorimetry, 2009, 96(2):623-630. doi: 10.1007/s10973-008-9100-5.pdf
    [10] WOLANSKI P, GUT Z, TRZCINSKI W A, et al.Visualization of turbulent combustion of TNT detonation products in a steel vessel[J].Shock Waves, 2000, 10(2):127-136. doi: 10.1007/s001930050186
    [11] TRZCINSKI W A, CUDZIŁO S, PASZULA J.Studies of free field and confined explosions of aluminium enriched RDX compositions[J].Propellants Explosives Pyrotechnics, 2007, 32(6):502-508. doi: 10.1002/(ISSN)1521-4087
    [12] CARNEY J R, LIGHTSTONE J M, MCGRATH Ⅱ T P, et al.Fuel-rich explosive energy release:oxidizer concentration dependence[J].Propellants Explosives Pyrotechnics, 2009, 34(4):331-339. doi: 10.1002/prep.v34:4
    [13] KUHL A L, REICHENBACH H.Combustion effects in confined explosions[J].Proceedings of the Combustion Institute, 2009, 32(2):291-2298. https://www.sciencedirect.com/science/article/pii/S1540748908000047
    [14] 曹威, 何中其, 陈网桦.TNT后燃反应的水下爆炸实验研究与数值模拟[J].高压物理学报, 2014, 28(4):443-449. doi: 10.11858/gywlxb.2014.04.009

    CAO W, HE Z Q, CHEN W H.Experimental research and numerical simulation of afterburning reaction of TNT explosion by underwater explosion[J].Chinese Journal of High Pressure Physics, 2014, 28(4):443-449. doi: 10.11858/gywlxb.2014.04.009
    [15] 曹威, 何中其, 陈网桦, 等.水下爆炸法测量含铝炸药后燃效应[J].含能材料, 2012, 20(2):229-233 doi: 10.3969/j.issn.1006-9941.2012.02.020

    CAO W, HE Z Q, CHEN W H.Measurement of afterburning effect of aluminized explosives by underwater explosion method[J].Chinese Journal of Energetic Materials, 2012, 20(2):229-233 doi: 10.3969/j.issn.1006-9941.2012.02.020
    [16] BJARNHOLT G.Suggestions on standards for measurement and data evaluation in the underwater explosion test[J].Propellants Explosives Pyrotechnics, 1980, 5(5):67-74.
    [17] COLE R H.Underwater explosions[M].Princeton, NJ:Princeton University Press, 1948.
  • 加载中
图(5) / 表(7)
计量
  • 文章访问数:  7657
  • HTML全文浏览量:  3084
  • PDF下载量:  202
出版历程
  • 收稿日期:  2017-12-01
  • 修回日期:  2018-01-11

目录

    /

    返回文章
    返回