Comparison of Mechanical Properties and Damage Mode of Tungsten Alloy Spheres in Two Different States
-
摘要: 采用静态与动态加载试验的方法,研究了同一牌号、相同尺寸的烧结态与精磨态两种状态的钨合金球的力学性能。同时通过电镜扫描的手段,观察了两种状态的钨合金球试验前表面与内部金相结构及静态试验后表面的损伤模式,并分析了两种状态钨合金球产生力学性能差异的原因。研究结果表明:烧结态钨合金球表面因其钨颗粒与黏结相分布均匀,静态条件下其极限压溃载荷是精磨态钨合金球的2.02倍,动态条件下其性能也明显优于精磨态钨合金球。Abstract: In this paper, we studied the mechanical properties of tungsten alloy spheres in sintered and polished states using the quasi static test and the dynamic loading test, observed their metallographic structure and damage mode before and after the test using SEM, and analyzed the causes leading to their difference.The result showed that the surface microstructure of the tungsten alloy sphere in the sintered state was more uniform than that in the polished state, which accounts for its better mechanical properties.
-
Key words:
- tungsten alloy sphere /
- mechanical properties /
- damage mode /
- SEM
-
表 1 钨合金球化学成分
Table 1. Chemical composition of tested tungsten alloy spheres (%)
Ni Fe Co W 4.3 2.2 0.4 93.1 表 2 参试钨合金球外径尺寸
Table 2. Diameter of tested tungsten alloy spheres
State Diameter/mm No.1 No.2 No.3 No.4 No.5 No.6 Sintered 7.00-7.09 7.01-7.04 7.00-7.08 7.02-7.10 7.01-7.04 7.03-7.09 Polished 7.00-7.02 7.00-7.01 7.00-7.01 7.00-7.01 7.00-7.02 7.00-7.01 表 3 静态加载试验结果
Table 3. Results of quasi-static test
State No.1 No.2 No.3 Crushing load/kN Deformation/% Crushing load/kN Deformation/% Crushing load/kN Deformation/% Sintered 157 66.54 163 67.01 155 65.86 Polished 77 50.39 85 51.05 73 51 表 4 动态加载试验钨合金球触靶速度
Table 4. Terminal velocity of tungsten alloy spheres
State Terminal velocity/(m·s-1) No.4 No.5 No.6 Sintered 468 492 446 Polished 430 447 506 -
[1] 王松, 陈宏燕, 胡洁琼.高比重钨合金的现状研究[J].贵金属, 2011, 32(3):85-88. http://www.cnki.com.cn/Article/CJFDTOTAL-GJSZ201103017.htmWANG S, CHEN H Y, HU J Q.Research status of tungsten alloys[J].Precious Metals, 2011, 32(3):85-88. http://www.cnki.com.cn/Article/CJFDTOTAL-GJSZ201103017.htm [2] 吴泽卫, 徐英鸽, 李明.高密度钨合金的研究现状[J].热加工工艺, 2014, 43(12):5-7. http://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201412003.htmWU Z W, XU Y G, LI M, Research status of high-density tungsten alloy[J].HOT Working Technology, 2014, 43(12):5-7. http://www.cnki.com.cn/Article/CJFDTOTAL-SJGY201412003.htm [3] 谭多望, 王广军, 龚晏青.球形钨合金破片空气阻力系数实验研究[J].高压物理学报, 2007, 21(3):235-236. http://www.gywlxb.cn/CN/abstract/abstract191.shtmlTAN D W, WANG G J, GONG Y Q.Experimental atudies on air drag coefficient of spherical tungsten fragmnets[J].Chinese Journal of High Pressure Physics, ,2007, 21(3):235-236. http://www.gywlxb.cn/CN/abstract/abstract191.shtml [4] 中国人民解放军总装备部. 军用钨合金珠: GJB3793-1999[S]. 北京: 中国标准出版社, 2000.The General Reserve Department of PLA.Military tungsten alloy pearl:GJB3793-1999[S].Beijing:Chinese Standards Press, 2000. [5] 谭多望, 李翔, 温殿英.球形钨合金破片终点弹道性能实验研究[J].爆炸与冲击, 2003, 23(5):425-429. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCWL200200001016.htmTAN D W, LI X, WEN D Y.Experimental investigation of terminal effects of spherical tungsten fragments[J].Explosion and Shock Waves, 2003, 23(5):425-429. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCWL200200001016.htm [6] 姜春兰, 陈放, 李明.钨球对陶瓷/铝复合靶的侵彻与贯穿[J].兵工学报, 2001, 22(1):36-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bgxb200101010JIANG C L, CHEN F, LI M.Penetration and perforation of ceramic/aluminum composite targets by high-speed tungsten alloy sphere[J].Acta Armamentarii, 2001, 22(1):36-40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bgxb200101010 [7] 张兆森, 熊湘军, 王伏生.钨合金珠性能测试方法的探讨[J].矿冶工程, 2002, 22(1):96-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kygc200201031ZHANG Z S, XIONG X J, WANG F S.Investigation of testing methods of tungsten alloy ball's properties[J].Mining and Metallurgical Engineering, 2002, 22(1):96-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kygc200201031 [8] 米双山, 张锡恩, 陶贵明.钨球侵彻LY-12铝合金靶板的有限元分析[J].爆炸与冲击, 2005, 25(5):477-480. doi: 10.11883/1001-1455(2005)05-0477-04MI S S, ZHANG X E, TAO G M.Finite element analysis of spherical fragments penetrating LY-12 aluminum alloy target[J].Explosion and Shock Waves, 2005, 25(5):477-480. doi: 10.11883/1001-1455(2005)05-0477-04 [9] FORTUNA E, ZIELINSKI W, SIKORSKI K.TEM characterization of microstructure of a tungsten heavy alloy[J].Materials Chemistry and Physics, 2003, 81:469-471. doi: 10.1016/S0254-0584(03)00055-5 [10] 陈强, 尤清照, 葛启录, 等.W-Ni-Fe高比重合金表面强化[J].钢铁研究学报, 2000, 12(2):33-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtyjxb200002008CHEN Q, YOU Q Z, GE Q L, et al.Surface harding of W-Ni-Fe heavy alloys[J].Journal of Iron and Steel Research, 2000, 12(2):33-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gtyjxb200002008 [11] 刘桂荣, 刘国辉, 王铁军, 等.W-Ni-Fe高比重合金断口形貌研究[J].中国钨业, 2004, 19(3):36-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwy200403012LIU G R, LIU G H, WANG T J, et al.Research on fracture surface of W-Ni-Fe tungsten heavy alloy[J].China Tungsten Industry, 2004, 19(3):36-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwy200403012 [12] 黄继华, 赖和怡, 周国安.高比重钨合金的微观结构和性能的关系[J].粉末冶金技术, 1992, 1(2):63-68. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=fmyj199201014&dbname=CJFD&dbcode=CJFQHUANG J H, LAI H Y, ZHOU G A.Relation between microstructures and properties of heavy alloys[J].Powder Metallurgy Technology, 1992, 1(2):63-68. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=fmyj199201014&dbname=CJFD&dbcode=CJFQ [13] LEE K H, CHA S I, RYU H J, et al.Effect of two-stagesintering process on microstructure and mechanical properties of ODS tungsten heavy alloys[J].Materials Science and Engineering A, 2007, 458(1/2):323-329. https://www.sciencedirect.com/science/article/pii/S0921509307001931