氢的高压奇异结构与金属化

耿华运 孙毅

耿华运, 孙毅. 氢的高压奇异结构与金属化[J]. 高压物理学报, 2018, 32(2): 020101. doi: 10.11858/gywlxb.20170674
引用本文: 耿华运, 孙毅. 氢的高压奇异结构与金属化[J]. 高压物理学报, 2018, 32(2): 020101. doi: 10.11858/gywlxb.20170674
GENG Huayun, SUN Yi. On the Novel Structure and Metallization of Hydrogen under High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 020101. doi: 10.11858/gywlxb.20170674
Citation: GENG Huayun, SUN Yi. On the Novel Structure and Metallization of Hydrogen under High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 020101. doi: 10.11858/gywlxb.20170674

氢的高压奇异结构与金属化

doi: 10.11858/gywlxb.20170674
基金项目: 

国家自然科学基金 11672274

国家自然科学基金 11274281

国家自然科学基金委员会-中国工程物理研究院“NSAF”联合基金 U1730248

中国工程物理研究院发展基金 2012A0101001

中国工程物理研究院发展基金 2015B0101005

冲击波物理与爆轰物理重点实验室基金 6142A03010101

详细信息
    作者简介:

    耿华运,副研究员,主要从事凝聚态物理研究.E-mail:s102genghy@caep.cn

  • 中图分类号: O521.2

On the Novel Structure and Metallization of Hydrogen under High Pressure

  • 摘要: 在极端压缩状态下,氢呈现出丰富的物理及化学变化,其结构与相图揭示了凝聚态物质高压行为的典型特征,在天体物理和新材料研究中有重要应用。本文简要回顾了金属氢概念的提出,以及直至最近几年的研究进展,分析总结了高密度氢研究中的一些核心问题和发展态势。利用密度泛函理论计算和状态方程模型分析,综合探讨了氢在高压下复杂的原子结构、分子氢离解区域附近的复杂行为、金属氢的亚稳定性和可回收性,以及“DAC+冲击”加载方法在金属氢研究中的优势与不足等问题。结果表明:通过快速或缓慢的压力释放回收金属氢的高压相到常压是几乎不可能的;高压下氢的复杂行为给实验和理论研究带来了巨大挑战,特别是离解区域附近理论与理论、实验与实验、以及理论与实验之间的结果都存在巨大差异,暗示当前通用的实验测试方法和常用的多电子理论计算方法还存在很大的改进空间。

     

  • 图  第一原理分子动力学预测的介于固体和液体之间的新奇物态——流动固体,高密度氢极有可能进入这一相态

    Figure  1.  The novel mobile solid state predicted by first principle molecular dynamics simulations (Dense hydrogen may transition into this state.)

    图  介于固体与液体之间的流动固体在压力-温度(p-T)相图上的位置

    Figure  2.  Possible location of the mobile solid state in the p-T phase diagram

    图  高温高压下氢的相图,离解线具体位置仍有争议

    Figure  3.  Phase diagram of hydrogen at high pressure and high temperature (The location of the dissociation curve is still under debate.)

    图  DFT计算得到的沿一系列等温线的结合能-压力变化曲线

    Figure  4.  Predicted cohesive energy as a function of pressure along different isotherms for dense liquid hydrogen by DFT calculations

    图  DFT计算得到的沿一系列等温线的压力-体积变化曲线

    Figure  5.  Pressure-volume curves of dense liquid hydrogen along different isotherms calculated by DFT

    图  晶胞可变NEB方法预测含有H3单元或分子/原子混合相的结构在零压下具有能量平台

    Figure  6.  Flat landscape of energy along the NEB path for the structures containing H3 units or hydrogen molecule/atom mixture at 0GPa predicted by the cell-variable NEB method

    图  基于DFT-PBE近似的第一原理分子动力学模拟得到的Fddd结构金属氢在低压下的过热极限

    Figure  7.  Superheating limit of metallic hydrogen in the Fddd structure at low pressure simulated by molecular dynamics with DFT-PBE method

    图  晶胞可变NEB方法计算得到的315GPa压力下Fddd结构金属氢与分子晶体间的势垒

    Figure  8.  Energy barriers between the Fddd structure of metallic hydrogen and the molecular crystal structure at 315GPa calculated by cell-variable NEB method

    图  CML状态方程预估的高密度氢中的“预压+冲击”路径(Tm为熔化温度)

    Figure  9.  Hugoniot of precompressed hydrogen predicted by the CML-EOS model (Tm:melting temperature)

    图  10  CML状态方程预估的高密度氢中“预压+冲击”路径的局限性,以及与质子核量子效应的上限温度比较

    Figure  10.  Hugoniot of precompressed hydrogen predicted by CML-EOS model and its comparison with the upper temperature limits of quantum effects of protons

  • [1] COOPER N G.Challenges in plutonium science[M]. Los Alamos, NM:Los Alamos Science, 2000, 26:16-23.
    [2] MOORE K T, VAN DER LAAN G.Nature of the 5f states in actinide metals[J]. Reviews of Modern Physics, 2009, 81(1):235-298. doi: 10.1103/RevModPhys.81.235
    [3] NEATONAND J B, ASHCROFT N W.Pairing in dense lithium[J]. Nature, 1999, 400(6740):141-144. doi: 10.1038/22067
    [4] MA Y, EREMETS M, OGANOV A R, et al.Transparent dense sodium[J]. Nature, 2009, 485(7235):182-185.
    [5] SILVERA I F.The solid molecular hydrogens in the condensed phase:fundamentals and static properties[J]. Reviews of Modern Physics, 1980, 52(2):393-452. doi: 10.1103/RevModPhys.52.393
    [6] MCMAHON J M, MORALES M A, PIERLEONI C, et al.The properties of hydrogen and helium under extreme conditions[J]. Reviews of Modern Physics, 2012, 84(4):1607-1653. doi: 10.1103/RevModPhys.84.1607
    [7] AZADI S, FOULKES W M C.Fate of density functional theory in the study of high-pressure solid hydrogen[J]. Physical Review B, 2013, 88(1):014115. doi: 10.1103/PhysRevB.88.014115
    [8] MCMINIS J, CLAYⅢ R C, LEE D, et al.Molecular to atomic phase transition in hydrogen under high pressure[J]. Physical Review Letters, 2015, 114(10):105305. doi: 10.1103/PhysRevLett.114.105305
    [9] KNUDSON M D, DESJARLAIS M P.High-precision shock wave measurements of deuterium:evaluation of exchange-correlation functionals at the molecular-to-atomic transition[J]. Physical Review Letters, 2017, 118(3):035501. doi: 10.1103/PhysRevLett.118.035501
    [10] WIGNER E, HUNTINGTON H B.On the possibility of a metallic modification of hydrogen[J]. The Journal of Chemical Physics, 1935, 3(12):764-770. doi: 10.1063/1.1749590
    [11] 冯端.金属物理学:第二卷:相变[M].北京:科学出版社, 1990.
    [12] ASHCROFT N W.Metallic hydrogen:a high-temperature superconductor?[J]. Physical Review Letters, 1968, 21(26):1748-1749. doi: 10.1103/PhysRevLett.21.1748
    [13] RICHARDSON C F, ASHCROFT N W.High temperature superconductivity in metallic hydrogen:electron-electron enhancements[J]. Physical Review Letters, 1997, 78(1):118-121. doi: 10.1103/PhysRevLett.78.118
    [14] BABAEV E, SUDBØ A, ASHCROFT N W.A superconductor to superfluid phase transition in liquid metallic hydrogen[J]. Nature, 2004, 431(7009):666-668. doi: 10.1038/nature02910
    [15] HEMLEY R J, MAO H K.Phase transition in solid molecular hydrogen at ultrahigh pressures[J]. Physical Review Letters, 1988, 61(7):857-860. doi: 10.1103/PhysRevLett.61.857
    [16] RUOFF A L, VANDERBORGH C A.Hydrogen reduction of ruby at high pressure:implication for claims of metallic hydrogen[J]. Physical Review Letters, 1991, 66(6):754-757. doi: 10.1103/PhysRevLett.66.754
    [17] MAO H K, HEMLEY R J.Ultrahigh-pressure transitions in solid hydrogen[J]. Reviews of Modern Physics, 1994, 66(2):671-692. doi: 10.1103/RevModPhys.66.671
    [18] LOUBEYRE P, LETOULLEC R, HAUSERMANN D, et al.X-ray diffraction and equation of state of hydrogen at megabar pressures[J]. Nature, 1996, 383(6602):702-704. doi: 10.1038/383702a0
    [19] NELLIS W J, WEIR S T, MITCHELL A C.Metallization and electrical conductivity of hydrogen in Jupiter[J]. Science, 1996, 273(5277):936-938. doi: 10.1126/science.273.5277.936
    [20] NARAYANA C, LUO H, ORLOFF J, et al.Solid hydrogen at 342GPa:no evidence for an alkali metal[J]. Nature, 1998, 393(6680):46-49. doi: 10.1038/29949
    [21] GONCHAROV A F, GREGORYANZ E, HEMLEY R J, et al.Spectroscopic studies of the vibrational and electronic properties of solid hydrogen to 285GPa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(25):14234-14237. doi: 10.1073/pnas.201528198
    [22] LOUBEYRE P, OCCELLI F, LETOULLEC R.Optical studies of solid hydrogen to 320GPa and evidence for black hydrogen[J]. Nature, 2002, 416(6881):613-617. doi: 10.1038/416613a
    [23] GONCHARENKO I, LOUBEYRE P.Neutron and X-ray diffraction study of the broken symmetry phase transition in solid deuterium[J]. Nature, 2005, 435(7046):1206-1209. doi: 10.1038/nature03699
    [24] EREMETS M I, TROYAN I A.Conductive dense hydrogen[J]. Nature Materials, 2011, 10(12):927-931. doi: 10.1038/nmat3175
    [25] KNUDSON M D, DESJARLAIS M P, BECKER A, et al.Direct observation of an abruptinsulator-to-metal transition in dense liquid deuterium[J]. Science, 2015, 348(6242):1455-1460. doi: 10.1126/science.aaa7471
    [26] DALLADAY-SIMPSON P, HOWIE R T, GREGORYANZ E.Evidence for a new phase of dense hydrogen above 325 gigapascals[J]. Nature, 2016, 529(7584):63-67. doi: 10.1038/nature16164
    [27] DIAS R P, SILVERA I F.Observation of the Wigner-Huntington transition to metallic hydrogen[J]. Science, 2017, 355(6326):715-718. doi: 10.1126/science.aal1579
    [28] CHAKRAVARTY S, ROSE J H, WOOD D, et al.Theory of dense hydrogen[J]. Physical Review B, 1981, 24(4):1624-1635. doi: 10.1103/PhysRevB.24.1624
    [29] MIN B I, JANSEN H J, FREEMAN A J.Structural properties, superconductivity, and magnetism of metallic hydrogen[J]. Physical Review B, 1984, 30(9):5076-5083. doi: 10.1103/PhysRevB.30.5076
    [30] MIN B I, JANSEN H J, FREEMAN A J.Pressure-induced electronic and structural phase transitions in solid hydrogen[J]. Physical Review B, 1986, 33(9):6383-6390. doi: 10.1103/PhysRevB.33.6383
    [31] CEPERLEY D M, ALDER B J.Ground state of solid hydrogen at high pressures[J]. Physical Review B, 1987, 36(4):2092-2106. doi: 10.1103/PhysRevB.36.2092
    [32] BARBEE T W Ⅲ, COHEN M L, MARTINS J L.Theory of high-pressure phases of hydrogen[J]. Physical Review Letters, 1989, 62(10):1150-1153. doi: 10.1103/PhysRevLett.62.1150
    [33] SURH M P, BARBEE T W Ⅲ, MAILHIOT C.Zero-point motion and the insulator-metal transition in solid molecular hydrogen[J]. Physical Review Letters, 1993, 70(26):4090-4093. doi: 10.1103/PhysRevLett.70.4090
    [34] EDWARDS B, ASHCROFT N W, LENOSKY T.Layering transitions and the structure of dense hydrogen[J]. Europhysics Letters, 1996, 34(7):519-524. doi: 10.1209/epl/i1996-00489-5
    [35] JOHNSON K A, ASHCROFT N W.Structure and bandgap closure in dense hydrogen[J]. Nature, 2000, 403(6770):632-635. doi: 10.1038/35001024
    [36] PICKARD C J, NEEDS R J.Structure of phase Ⅲ of solid hydrogen[J]. Nature Physics, 2007, 3(7):473-476. doi: 10.1038/nphys625
    [37] TSE J S, KLUG D D.Evidence from molecular dynamics simulations for non-metallic behaviour of solid hydrogen above 160GPa[J]. Nature, 1995, 378(6557):595-597. doi: 10.1038/378595a0
    [38] 芶清泉.金属氢的高压合成机理[J].高压物理学报, 1987, 1(1):3-6. doi: 10.11858/gywlxb.1987.01.001

    GOU Q Q.Mechanism for the metallization of solid hydrogen under high pressure[J]. Chinese Journal of High Pressure Physics, 1987, 1(1):3-6. doi: 10.11858/gywlxb.1987.01.001
    [39] 杨仕清, 苟清泉.金属氢的六角密堆积结构与能量的全量子力学计算[J].科学通报, 1995, 40(19):1759-1762. doi: 10.3321/j.issn:0023-074X.1995.19.008
    [40] 李俊杰, 朱宰万.超高压下固态氢金属转变的理论研究[J].延边大学学报(自然科学版), 1998, 24(1):21-29.

    LI J J, ZHU Z W.The theory studies of solid state hydrogen transition to metallic hydrogen under superhigh pressure[J]. Journal of Yanbian University (Natural Science), 1998, 24(1):21-29.
    [41] 李俊杰, 朱宰万, 金曾孙, 等.固氢金属化转变压力的理论计算[J].高压物理学报, 2001, 15(3):215-220. doi: 10.11858/gywlxb.2001.03.008

    LI J J, ZHU Z W, JIN Z S, et al.Theoretical calculation of transformation pressure in solid hydrogen metallization[J]. Chinese Journal of High Pressure Physics, 2001, 15(3):215-220. doi: 10.11858/gywlxb.2001.03.008
    [42] GENG H Y, SONG H X, LI J F, et al.High-pressure behavior of dense hydrogen up to 3.5TPa from density functional theory calculations[J]. Journal of Applied Physics, 2012, 111(6):063510. doi: 10.1063/1.3694793
    [43] STRAUS D M, ASHCROFT N W.Self-consistent structure of metallic hydrogen[J]. Physical Review Letters, 1977, 38(8):415-418. doi: 10.1103/PhysRevLett.38.415
    [44] NATOLI V, MARTIN R M, CEPERLEY D M.Crystal structure of atomic hydrogen[J]. Physical Review Letters, 1993, 70(13):1952-1955. doi: 10.1103/PhysRevLett.70.1952
    [45] NATOLI V, MARTIN R M, CEPERLEY D.Crystal structure of molecular hydrogen at high pressure[J]. Physical Review Letters, 1995, 74(9):1601-1604. doi: 10.1103/PhysRevLett.74.1601
    [46] BIERMANN S, HOHL D, MARX D.Quantum effects in solid hydrogen at ultra-high pressure[J]. Solid State Communications, 1998, 108(6):337-341. doi: 10.1016/S0038-1098(98)00388-3
    [47] HOWIE R T, GUILLAUME C L, SCHELER T, et al.Mixed molecular and atomic phase of dense hydrogen[J]. Physical Review Letters, 2012, 108(12):125501. doi: 10.1103/PhysRevLett.108.125501
    [48] HOWIE R T, SCHELER T, GUILLAUME C L, et al.Proton tunneling in phase Ⅳ of hydrogen and deuterium[J]. Physical Review B, 2012, 86(21):214104. doi: 10.1103/PhysRevB.86.214104
    [49] LABET V, HOFFMANN R, ASHCROFT N W.A fresh look at dense hydrogen under pressure.Ⅲ.two competing effects and the resulting intra-molecular H-H separation in solid hydrogen under pressure[J]. The Journal of Chemical Physics, 2012, 136(7):074503. doi: 10.1063/1.3679749
    [50] LABET V, HOFFMANN R, ASHCROFT N W.A fresh look at densehydrogen under pressure.Ⅳ.two structural models on the road from paired to monatomic hydrogen, via a possible non-crystalline phase[J]. The Journal of Chemical Physics, 2012, 136(7):074504. doi: 10.1063/1.3679751
    [51] GENG H Y, WU Q.Predicted reentrant melting of dense hydrogen at ultra-high pressures[J]. Scientific Reports, 2016, 6(1):36745. doi: 10.1038/srep36745
    [52] WANG Z, WANG H, TSE J S, et al.Stabilization of H3+ in the high pressure crystalline structure of HnCl (n=2-7)[J]. Chemical Science, 2015, 6(1):522-526. doi: 10.1039/C4SC02802C
    [53] CHEN Y, GENG H Y, YAN X, et al.Prediction of stable ground-state lithium polyhydrides under high pressures[J]. Inorganic Chemistry, 2017, 56(7):3867-3874. doi: 10.1021/acs.inorgchem.6b02709
    [54] GENG H Y, HOFFMANN R, WU Q.Lattice stability and high pressure melting mechanism of dense hydrogen up to 1.5TPa[J]. Physical Review B, 2015, 92(10):104103. doi: 10.1103/PhysRevB.92.104103
    [55] GENG H Y.Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface[J]. Journal of Computational Physics, 2015, 283(1):299-311.
    [56] JONES M D, CEPERLEY D M.Crystallization of the one-component plasma at finite temperature[J]. Physical Review Letters, 1996, 76(24):4572-4575. doi: 10.1103/PhysRevLett.76.4572
    [57] GENG H Y, WU Q, SUN Y.Prediction of a mobile solid state in dense hydrogen under high pressures[J]. The Journal of Physical Chemistry Letters, 2017, 8(1):223-228. doi: 10.1021/acs.jpclett.6b02453
    [58] CHEN J, LI X Z, ZHANG Q, et al.Quantum simulation of low temperature metallic liquid hydrogen[J]. Nature Communications, 2013, 4:2064.
    [59] DASH J G.History of the search for continuous melting[J]. Reviews of Modern Physics, 1999, 71(5):1737-1743. doi: 10.1103/RevModPhys.71.1737
    [60] HAN S, CHOI M Y, KUMAR P, et al.Phase transitions in confined water nanofilms[J]. Nature Physics, 2010, 6(9):685-689. doi: 10.1038/nphys1708
    [61] HUBBARD W B.Interiors of the giant planets[J]. Science, 1981, 214(4517):145-149. doi: 10.1126/science.214.4517.145
    [62] SAUMON D, CHABRIER G.Fluid hydrogen at high density:pressure ionization[J]. Physical Review A, 1992, 46(4):2084-2100. doi: 10.1103/PhysRevA.46.2084
    [63] LORENZEN W, HOLST B, REDMER R.First-order liquid-liquid phase transition in dense hydrogen[J]. Physical Review B, 2010, 82(19):195107. doi: 10.1103/PhysRevB.82.195107
    [64] PIERLEONI C, MORALES M A, RILLO G, et al.Liquid-liquid phase transition in hydrogen by couple delectron-ion Monte Carlo simulations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(18):4953-4957. doi: 10.1073/pnas.1603853113
    [65] MAZZOLA G, SORELLA S.Distinct metallization and atomization transitions in dense liquid hydrogen[J]. Physical Review Letters, 2015, 114(10):105701. doi: 10.1103/PhysRevLett.114.105701
    [66] DZYABURA V, ZAGHOO M, SILVERA I F.Evidence of a liquid-liquid phase transition in hot dense hydrogen[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(20):8040-8044. doi: 10.1073/pnas.1300718110
    [67] OHTA K, ICHIMARU K, EINAGA M, et al.Phase boundary of hot dense fluid hydrogen[J]. Scientific Reports, 2015, 1(1):16560.
    [68] EREMETS M I, TROYAN I A, DROZDOV A P. Low temperature phase diagram of hydrogen at pressure up to 380GPa: a possible metallic phase at 360GPa and 200K[J/OL]. (2016-01-18)[2017-11-14]. http://arxiv.org/abs/1601.04479.
    [69] ZAGHOO M, SALAMAT A, SILVERA I F.Evidence for a first-order phase transition to metallic hydrogen[J]. Physical Review B, 2016, 93(15):155128. doi: 10.1103/PhysRevB.93.155128
    [70] BROVMAN E G, KAGAN Y, KHOLAS A.Structure of metallic hydrogen at zero pressure[J]. Soviet Journal of Experimental & Theoretical Physics, 1972, 34(6):1300-1315.
    [71] BROVMAN E G, KAGAN Y, KHOLAS A.Properties of metallic hydrogen under pressure[J]. Soviet Journal of Experimental & Theoretical Physics, 1972, 35(4):783-787.
    [72] LOUBEYRE P, CELLIERS P M, COLLINS G W, et al.Coupling static and dynamic compressions:first measurements in dense hydrogen[J]. High Pressure Research, 2004, 24(1):25-31. doi: 10.1080/08957950310001635792
    [73] JEANLOZ R, CELLIERS P M, COLLINS G W, et al.Achieving high-density states through shock-wave loading of precompressed samples[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22):9172-9177. doi: 10.1073/pnas.0608170104
    [74] CHEN Y M, CHEN X R, WU Q, et al.Compression and phase diagram of lithium hydrides at elevated pressures and temperatures by first-principles calculation[J]. Journal of Physics D:Applied Physics, 2016, 49(35):355305. doi: 10.1088/0022-3727/49/35/355305
    [75] CAILLABET L, MAZEVET S, LOUBEYRE P.Multiphase equation of state of hydrogen from ab initio calculations in the range 0.2 to 5g/cc up to 10eV[J]. Physical Review B, 2011, 83(9):094101. doi: 10.1103/PhysRevB.83.094101
    [76] ZHA C S, LIU H, TSE J S, et al.Melting and high P-T transitions of hydrogen to 300GPa[J]. Physical Review Letters, 2017, 119(7):075302. doi: 10.1103/PhysRevLett.119.075302
    [77] CHAKRAVARTY S, ASHCROFT N W.Ground state of metallic hydrogen[J]. Physical Review B, 1978, 18(9):4588-4597. doi: 10.1103/PhysRevB.18.4588
  • 加载中
图(10)
计量
  • 文章访问数:  15791
  • HTML全文浏览量:  3527
  • PDF下载量:  551
出版历程
  • 收稿日期:  2017-11-14
  • 修回日期:  2017-11-24

目录

    /

    返回文章
    返回