Processing math: 100%

氢的高压奇异结构与金属化

耿华运 孙毅

李正鹏, 曲艳东. 爆炸载荷作用下焊缝区附近埋地X70钢管的动力响应分析[J]. 高压物理学报, 2020, 34(3): 034204. doi: 10.11858/gywlxb.20190831
引用本文: 耿华运, 孙毅. 氢的高压奇异结构与金属化[J]. 高压物理学报, 2018, 32(2): 020101. doi: 10.11858/gywlxb.20170674
LI Zhengpeng, QU Yandong. Dynamic Response Analysis of Buried X70 Steel Pipe near Weld Zone under Blast Loads[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 034204. doi: 10.11858/gywlxb.20190831
Citation: GENG Huayun, SUN Yi. On the Novel Structure and Metallization of Hydrogen under High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 020101. doi: 10.11858/gywlxb.20170674

氢的高压奇异结构与金属化

doi: 10.11858/gywlxb.20170674
基金项目: 

国家自然科学基金 11672274

国家自然科学基金 11274281

国家自然科学基金委员会-中国工程物理研究院“NSAF”联合基金 U1730248

中国工程物理研究院发展基金 2012A0101001

中国工程物理研究院发展基金 2015B0101005

冲击波物理与爆轰物理重点实验室基金 6142A03010101

详细信息
    作者简介:

    耿华运,副研究员,主要从事凝聚态物理研究.E-mail:s102genghy@caep.cn

  • 中图分类号: O521.2

On the Novel Structure and Metallization of Hydrogen under High Pressure

  • 摘要: 在极端压缩状态下,氢呈现出丰富的物理及化学变化,其结构与相图揭示了凝聚态物质高压行为的典型特征,在天体物理和新材料研究中有重要应用。本文简要回顾了金属氢概念的提出,以及直至最近几年的研究进展,分析总结了高密度氢研究中的一些核心问题和发展态势。利用密度泛函理论计算和状态方程模型分析,综合探讨了氢在高压下复杂的原子结构、分子氢离解区域附近的复杂行为、金属氢的亚稳定性和可回收性,以及“DAC+冲击”加载方法在金属氢研究中的优势与不足等问题。结果表明:通过快速或缓慢的压力释放回收金属氢的高压相到常压是几乎不可能的;高压下氢的复杂行为给实验和理论研究带来了巨大挑战,特别是离解区域附近理论与理论、实验与实验、以及理论与实验之间的结果都存在巨大差异,暗示当前通用的实验测试方法和常用的多电子理论计算方法还存在很大的改进空间。

     

  • 作为液体和气体长距离运输的一种重要方式,管道运输在国家经济发展和国民生活中发挥着重要作用。然而,随着城镇化进程的加速,城市管网系统密集分布,爆炸作用引起的管道安全问题受到国内外广泛关注[1-3]。都的箭等[4]通过实验研究发现,正对爆心管段背面受到很大的轴向拉应力作用,且管道受爆炸载荷的影响主要与爆心距有关。Ji等[5]研究了X70钢管在局部爆炸载荷下的动力响应,发现管道的挠度和损伤程度随炸药量和接触面积的增大而增大,且壁厚对管道损伤和失效后的运动有重要作用。数值模拟是研究爆炸问题的一种重要方法,只要方法得当,模拟效果可与实际情况相吻合[6-7]。为此,梁政等[8]利用数值模拟方法研究了管道埋深、药量和管道壁厚因素对爆炸载荷下的埋地管道动力响应的影响。房冲[9]通过模拟研究发现,在爆炸载荷下充水管道的变形量、位移和峰值压强都比内空管道小。余洋等[10]采用野外实验与数值计算相结合的方法研究了初始条件对钢质方管在侧向局部爆炸载荷作用下损伤破坏效应的影响。

    迄今为止,对爆炸载荷作用下焊缝区附近埋地钢管的动力响应的相关研究鲜有报道。基于此,以两种含Y型焊缝(坡口有2 mm余高焊缝和坡口无余高焊缝)的埋地X70钢管为例,采用有限元软件ANSYS/LS-DYNA,数值模拟研究爆炸载荷作用下焊缝区附近埋地X70钢管的动力响应规律,以期为埋地管线附近的爆破施工设计和埋地管线的安全防护提供一定的理论参考。

    采用cm-g-μs单位制,建立由TNT炸药、黄土和焊接管道组成的计算模型,如图1所示。模型纵向长38.4 cm,管道中心到模型侧面的宽度为130.0 cm,模型整体高271.6 cm,其中:TNT炸药为边长14.0 cm的正方体,采用中心起爆方式;焊接管道为外径1 016.0 mm、壁厚14.6 mm的X70钢管。焊缝选取两种尺寸[11],分别为Y型坡口有余高(H = 2.0 mm)焊缝和Y型坡口无余高(H = 0)焊缝,如图2所示。为了提高计算收敛速度,将焊缝尺寸设计图进行适当的简化,简化模型如图3所示。两种焊缝均不考虑分层焊接工艺的影响,焊缝与管道采用共节点方式连接。

    图  1  计算模型
    Figure  1.  Calculation model
    图  2  焊缝的设计尺寸
    Figure  2.  Design of weld size
    图  3  焊缝的简化模型
    Figure  3.  Simplified diagram of weld model

    考虑到计算模型的对称性,取1/2模型建模。炸药、黄土、管道及焊缝选用SOLID164六面体实体单元,用扫掠方式划分网格,并对焊缝位置进行网格细化处理。炸药和黄土采用欧拉网格,焊接管道和焊缝采用拉格朗日网格,运用任意拉格朗日-欧拉算法及管土间流固耦合算法模拟爆炸载荷作用下埋地焊接管道的动力响应。在土体外侧和底面设置透射边界条件,模型对称面施加对称约束。

    为了初步揭示爆炸载荷作用下两种焊缝形式的埋地焊接管道的动力响应规律,选取药包尺寸为14.0 cm × 14.0 cm × 14.0 cm的TNT炸药,对埋深为1.5 m的焊缝有余高(H = 2.0 mm)管道(管道A)和焊缝无余高(H = 0)管道(管道B),在炸高分别为60.0、85.0和110.0 cm的3种条件下的6种工况进行模拟计算,如表1所示,其中,hB为炸高。

    表  1  计算工况
    Table  1.  Calculation conditions
    Weld typeBuried depth of pipeline/mSize of TNT/(cm × cm × cm)hB/cm
    No weld reinforcement (H = 0)1.514.0 × 14.0 × 14.060.0, 85.0, 110.0
    Weld reinforcement (H = 2.0 mm)1.514.0 × 14.0 × 14.060.0, 85.0, 110.0
    下载: 导出CSV 
    | 显示表格

    TNT炸药选用高能炸药模型(Mat_High_Explosive_Burn)和JWL状态方程定义。JWL状态方程表达式为

    pz=A(1ωR1ν)eR1ν+B(1ωR2ν)eR2ν+ωEν (1)

    式中:pz为爆炸产物的压力,ABR1R2ω为TNT材料常数,v为爆炸产物的相对比容,E为炸药初始内能。炸药密度ρz、爆速D以及JWL状态方程参数见表2[12]

    表  2  炸药材料参数[12]
    Table  2.  Material parameters of explosive[12]
    ρz/(g·cm–3)D/(m·s–1)p/GPaA/GPaB/GPaR1R2ωE/(J·cm–3)
    1.586 93021373.773.754.150.900.356 000
    下载: 导出CSV 
    | 显示表格

    黄土选用泡沫模型(Mat_Soil_and_Foam)描述。该材料模型的应力屈服常数f

    f=Sijδij/2(a0+a1pt+a2pt2) (2)

    式中:Sij为土体材料的Cauchy偏应力张量,δij为土体材料的Kronecker系数,a0a1a2分别为土体摩擦角、土体黏聚力和土体爆炸动载效应的影响系数,pt为土体压力。a0a1a2由土工实验测得的内摩擦角和土壤黏聚力参数确定,土体密度ρt、剪切模量G、体积模量K等参数见表3[13-14]

    表  3  土体材料参数[1314]
    Table  3.  Material parameters of soil[1314]
    ρt/(g·cm–3)G/MPaK/MPaa0/Pa2a1/Paa2
    1.841.1487.872.12 × 1085.23 × 1033.22 × 10–2
    下载: 导出CSV 
    | 显示表格

    X70钢管道和焊缝均采用双线性随动材料模型(Mat_Plastic_Kinematic)描述,遵循von Mises屈服准则,其表达式为

    σ={Esεεεeσy+Et(εεe)ε>εe (3)

    式中:σ为应力;σy为屈服应力;Es为弹性模量;Et为切线模量,0 < Et < Esε为应变;εe为弹性极限应变。管道和焊缝的具体材料参数见表4[15-18],其中,μ为泊松比。

    表  4  管道及焊缝材料参数[1518]
    Table  4.  Material parameters of pipe and weld bead[1518]
    Materialρ/(g·cm–3)μEs/GPaEt/GPaσy/GPa
    X70-pipeline[1516]7.900.321013.50.48
    Weld bead[1718]7.250.322015.30.55
    下载: 导出CSV 
    | 显示表格

    图4为边长14.0 cm的正方体TNT炸药爆炸时,炸高hB为60.0 cm,埋深为1.5 m的两种X70管道焊缝附近的von-Mises应力云图。由图4可以看出:当传播时间为1 440 μs时,爆炸应力波阵面已经接触管道;当传播时间为1 600 μs时,焊缝有2.0 mm余高的管道A和焊缝无余高的管道B的最大应力增幅分别为81.4 MPa和43.0 MPa;当传播时间为1 920 μs时,管道A和管道B的最大应力均大于焊缝与管道的材料屈服应力,且应力沿迎爆面正对爆心位置向外扩展,其中管道A的应力呈“十”字形扩展,而管道B的应力以椭圆形向四周扩展;在3 520 μs时,管道应力集中主要沿裂缝位置发展,管道A和管道B的应力最大值分别为601.2 MPa和591.0 MPa;在6 080 μs时,管道A和管道B继续变形但应力减小,应力最大值分别减小到581.8 MPa和565.8 MPa;在9 120 μs时,管道A和管道B的应力集中基本消失。

    图  4  不同时刻X70钢管道的von Mises应力
    Figure  4.  von Mises stress of X70 steel pipe at different moments

    图5图6分别为两种管道外表面上正对爆心位置的焊缝与管道分界面处焊缝单元与管道单元的应力时程曲线。在管道受爆炸载荷作用阶段,两种管道的应力在大约480 μs内呈跳跃式上升。其主要原因是管道为瞬时受力,一部分爆炸能量使管道变形并向管道四周传递,导致焊缝与管道分界面处两个典型单元的应力呈降低趋势,此现象与图4的应力云图吻合。根据应力集中系数和余高关系的经验公式[19]可得:管道A和管道B的应力集中系数分别为1.016和1.008,即随着余高增大,应力集中系数逐渐增大。对比图5图6可知,管道A的焊缝单元应力峰值较高,应力下降趋势相对较陡。这也说明焊缝余高的存在使得焊缝与管道分界面的截面尺寸突变增大,从而导致焊缝有余高的焊接管道受应力集中的影响较大。在1 912 μs时,图5(管道A)和图6(管道B)的焊缝单元应力最大,分别约为560.0 MPa(焊缝的屈服强度为550 MPa)和545.6 MPa。同时,管道A的焊缝处首先达到管道屈服强度(480 MPa),按照von Mises屈服准则,管道A开始进入局部塑性变形阶段,此时管道B的应力尚未达到材料的屈服强度。

    图  5  管道A(H = 2.0 mm)典型单元的应力时程曲线
    Figure  5.  Stress-time curves of classic element of A pipe (H = 2.0 mm)
    图  6  管道B(H = 0)典型单元的应力时程曲线
    Figure  6.  Stress-time curves of classic element of B pipe (H = 0)

    埋地X70管道的迎爆面和背爆面的最大位移如表5所示。从表5可知,由于爆炸冲击波的一部分能量在土中被耗散,且随着爆炸冲击波在土中传播距离的增大,两种焊缝形式管道的迎爆面和背爆面的最大位移均呈现减小的趋势。当炸高hB从60.0 cm增加到85.0 cm以及从85.0 cm增加到110.0 cm时,管道A和管道B迎爆面的最大位移减小量分别为2.303 cm、0.715 cm和2.300 cm、0.572 cm,而管道A和管道B背爆面的最大位移减小量分别为0.391 cm、0.235 cm和0.373 cm、0.280 cm。两种焊缝形式管道迎爆面的最大位移减小量大于背爆面,这是由于爆炸冲击载荷在土中传播后直接作用于管道迎爆面,对管道迎爆面产生的影响较大,土体对管道背爆面具有一定的支撑作用,从而减小了管道背爆面位移。在相同炸高下管道A比管道B的最大位移大,且在炸高为60.0、85.0和110.0 cm时,两种焊缝形式管道迎爆面的最大位移差值分别为0.270、0.267和0.124 cm,即随着炸高的增大,两种焊缝形式的埋地焊接管道最大位移的差值逐渐减小,也说明当炸高较小时,管道A整体抵抗变形的能力弱于管道B。然而,随着炸高的增大,作用于管道的能量减小[20],管道塑性变形较小,使得这种现象逐渐模糊。

    表  5  埋地X70管道的迎爆面和背爆面的最大位移
    Table  5.  Maximum displacement of explosion-front and explosion-back surfaces of buried X70 pipeline
    Types of weldhB/cmMaximum displacement/cm
    Explosion-front surfaceExplosion-back surface
    Weld reinforcement (H = 2.0 mm) 60.05.4820.846
    85.03.1790.455
    110.02.4640.220
    No weld reinforcement (H = 0) 60.05.2120.943
    85.02.9120.570
    110.02.3400.290
    下载: 导出CSV 
    | 显示表格

    表6为两种不同类型焊缝的埋地焊接管道在不同炸高下的最大等效应变统计。从表6可知,管道A和管道B的最大等效应变均随炸高的增大而减小。当炸高从60.0 cm增大到85.0 cm时,管道A和管道B的最大等效应变分别减小约58.12%和61.13%;当炸高从85.0 cm增大到110.0 cm时,管道A和管道B的最大等效应变分别减小约45.92%和38.05%,在炸高相同时,管道A的最大等效应变大于管道B,且管道A的最大等效应变位于焊缝余高表面,而管道B的最大等效应变在焊缝与管道处一定范围内沿纵向分布。这在一定程度上说明管道B能更好地协调焊缝与管道分界处的应变,有利于保障焊缝与管道的局部协同变形性能。

    表  6  不同炸高时埋地X70管道的最大等效应变
    Table  6.  Maximum effective strain of buried X70 pipeline with different blasting heights
    Types of weldhB/cmPeak effective strain/10–3
    Weld reinforcement
    (H = 2.0 mm)
    60.09.937
    85.04.162
    110.02.251
    No weld reinforcement
    (H = 0)
    60.06.877
    85.02.673
    110.01.656
    下载: 导出CSV 
    | 显示表格

    表7为不同炸高下两种焊缝形式管道的迎爆面和背爆面处焊缝位置中心单元X方向的最大振动速度。从表7可以看出,两种焊缝形式管道的迎爆面和背爆面的最大振动速度均随着炸高增大而减小,且迎爆面的最大振速均大于背爆面。这说明迎爆面受爆炸地震波的影响较大。当炸高hB为60.0、85.0和110.0 cm时,管道B的迎爆面的最大振动速度较管道A大,迎爆面差值分别为1.600、0.539和0.329 m/s,而背爆面差值在0.200 m/s以内。管道峰值速度随着管壁厚度的增大而减小[12],由于管道A增加了管道在焊缝位置的径向厚度,可将其视为管道焊缝位置的壁厚增大导致管道A的峰值振速减小。这说明管道A抵抗爆炸振动的性能优于管道B,且在炸高为60.0 cm时,管道A抵抗振动性能的优势较为明显。

    表  7  埋地X70管道的迎爆面和背爆面最大振速
    Table  7.  Maximum vibration velocity of explosion-front and explosion-back surfaces of buried X70 pipeline
    Types of weldhB/cmMaximum vibration velocity/(m·s–1)
    Explosion-front surfaceExplosion-back surface
    Weld reinforcement (H = 2.0 mm) 60.022.7484.431
    85.0 9.3162.817
    110.0 4.5031.693
    No weld reinforcement (H = 0) 60.024.3484.294
    85.0 9.8552.867
    110.0 4.8321.746
    下载: 导出CSV 
    | 显示表格

    图7为不同炸高时两种焊缝形式的管道典型单元的速度时程曲线。当炸高hB分别为60.0、85.0和110.0 cm时,管道A和管道B达到最大振速的时间分别为2 560 μs和2 560 μs、4 500 μs和4 600 μs、7 200 μs和7 200 μs,两种焊缝形式的管道达到最大振速的时间差值均在100 μs以内。这说明两种焊缝形式的管道达到最大振速的时间主要受炸高的影响,受焊缝形式的影响较小。

    图  7  管道典型单元的速度时程曲线
    Figure  7.  Velocity-time curve of typical pipeline elements

    (1)当炸高为60.0 cm时,两种焊缝形式的埋地X70焊接管道在爆炸载荷作用下焊缝位置均出现应力集中,但焊缝有余高的管道受应力集中影响较大,且会先于焊缝无余高管道进入屈服阶段。

    (2)当炸高为60.0~110.0 cm时,由于爆炸载荷直接作用于迎爆面,且管土间的相互作用对管道背爆面具有一定的支撑作用,两种焊缝形式管道迎爆面的最大位移均大于背爆面的最大位移。当炸高为60.0、85.0 cm时,焊缝有余高的管道整体抵抗变形的能力明显弱于焊缝无余高的管道。

    (3)焊缝无余高管道较焊缝有余高管道在焊缝与管道分界处的应变更为协调,能更好地保障焊缝与管道的局部协同变形性能。

    (4)在相同的爆炸载荷下,焊缝有余高管道抵抗振动的性能优于焊缝无余高管道。药量相同条件下,相对于焊缝形式,炸高对含焊缝区管道的最大振速起主要作用。

  • 图  第一原理分子动力学预测的介于固体和液体之间的新奇物态——流动固体,高密度氢极有可能进入这一相态

    Figure  1.  The novel mobile solid state predicted by first principle molecular dynamics simulations (Dense hydrogen may transition into this state.)

    图  介于固体与液体之间的流动固体在压力-温度(p-T)相图上的位置

    Figure  2.  Possible location of the mobile solid state in the p-T phase diagram

    图  高温高压下氢的相图,离解线具体位置仍有争议

    Figure  3.  Phase diagram of hydrogen at high pressure and high temperature (The location of the dissociation curve is still under debate.)

    图  DFT计算得到的沿一系列等温线的结合能-压力变化曲线

    Figure  4.  Predicted cohesive energy as a function of pressure along different isotherms for dense liquid hydrogen by DFT calculations

    图  DFT计算得到的沿一系列等温线的压力-体积变化曲线

    Figure  5.  Pressure-volume curves of dense liquid hydrogen along different isotherms calculated by DFT

    图  晶胞可变NEB方法预测含有H3单元或分子/原子混合相的结构在零压下具有能量平台

    Figure  6.  Flat landscape of energy along the NEB path for the structures containing H3 units or hydrogen molecule/atom mixture at 0GPa predicted by the cell-variable NEB method

    图  基于DFT-PBE近似的第一原理分子动力学模拟得到的Fddd结构金属氢在低压下的过热极限

    Figure  7.  Superheating limit of metallic hydrogen in the Fddd structure at low pressure simulated by molecular dynamics with DFT-PBE method

    图  晶胞可变NEB方法计算得到的315GPa压力下Fddd结构金属氢与分子晶体间的势垒

    Figure  8.  Energy barriers between the Fddd structure of metallic hydrogen and the molecular crystal structure at 315GPa calculated by cell-variable NEB method

    图  CML状态方程预估的高密度氢中的“预压+冲击”路径(Tm为熔化温度)

    Figure  9.  Hugoniot of precompressed hydrogen predicted by the CML-EOS model (Tm:melting temperature)

    图  10  CML状态方程预估的高密度氢中“预压+冲击”路径的局限性,以及与质子核量子效应的上限温度比较

    Figure  10.  Hugoniot of precompressed hydrogen predicted by CML-EOS model and its comparison with the upper temperature limits of quantum effects of protons

  • [1] COOPER N G.Challenges in plutonium science[M]. Los Alamos, NM:Los Alamos Science, 2000, 26:16-23.
    [2] MOORE K T, VAN DER LAAN G.Nature of the 5f states in actinide metals[J]. Reviews of Modern Physics, 2009, 81(1):235-298. doi: 10.1103/RevModPhys.81.235
    [3] NEATONAND J B, ASHCROFT N W.Pairing in dense lithium[J]. Nature, 1999, 400(6740):141-144. doi: 10.1038/22067
    [4] MA Y, EREMETS M, OGANOV A R, et al.Transparent dense sodium[J]. Nature, 2009, 485(7235):182-185.
    [5] SILVERA I F.The solid molecular hydrogens in the condensed phase:fundamentals and static properties[J]. Reviews of Modern Physics, 1980, 52(2):393-452. doi: 10.1103/RevModPhys.52.393
    [6] MCMAHON J M, MORALES M A, PIERLEONI C, et al.The properties of hydrogen and helium under extreme conditions[J]. Reviews of Modern Physics, 2012, 84(4):1607-1653. doi: 10.1103/RevModPhys.84.1607
    [7] AZADI S, FOULKES W M C.Fate of density functional theory in the study of high-pressure solid hydrogen[J]. Physical Review B, 2013, 88(1):014115. doi: 10.1103/PhysRevB.88.014115
    [8] MCMINIS J, CLAYⅢ R C, LEE D, et al.Molecular to atomic phase transition in hydrogen under high pressure[J]. Physical Review Letters, 2015, 114(10):105305. doi: 10.1103/PhysRevLett.114.105305
    [9] KNUDSON M D, DESJARLAIS M P.High-precision shock wave measurements of deuterium:evaluation of exchange-correlation functionals at the molecular-to-atomic transition[J]. Physical Review Letters, 2017, 118(3):035501. doi: 10.1103/PhysRevLett.118.035501
    [10] WIGNER E, HUNTINGTON H B.On the possibility of a metallic modification of hydrogen[J]. The Journal of Chemical Physics, 1935, 3(12):764-770. doi: 10.1063/1.1749590
    [11] 冯端.金属物理学:第二卷:相变[M].北京:科学出版社, 1990.
    [12] ASHCROFT N W.Metallic hydrogen:a high-temperature superconductor?[J]. Physical Review Letters, 1968, 21(26):1748-1749. doi: 10.1103/PhysRevLett.21.1748
    [13] RICHARDSON C F, ASHCROFT N W.High temperature superconductivity in metallic hydrogen:electron-electron enhancements[J]. Physical Review Letters, 1997, 78(1):118-121. doi: 10.1103/PhysRevLett.78.118
    [14] BABAEV E, SUDBØ A, ASHCROFT N W.A superconductor to superfluid phase transition in liquid metallic hydrogen[J]. Nature, 2004, 431(7009):666-668. doi: 10.1038/nature02910
    [15] HEMLEY R J, MAO H K.Phase transition in solid molecular hydrogen at ultrahigh pressures[J]. Physical Review Letters, 1988, 61(7):857-860. doi: 10.1103/PhysRevLett.61.857
    [16] RUOFF A L, VANDERBORGH C A.Hydrogen reduction of ruby at high pressure:implication for claims of metallic hydrogen[J]. Physical Review Letters, 1991, 66(6):754-757. doi: 10.1103/PhysRevLett.66.754
    [17] MAO H K, HEMLEY R J.Ultrahigh-pressure transitions in solid hydrogen[J]. Reviews of Modern Physics, 1994, 66(2):671-692. doi: 10.1103/RevModPhys.66.671
    [18] LOUBEYRE P, LETOULLEC R, HAUSERMANN D, et al.X-ray diffraction and equation of state of hydrogen at megabar pressures[J]. Nature, 1996, 383(6602):702-704. doi: 10.1038/383702a0
    [19] NELLIS W J, WEIR S T, MITCHELL A C.Metallization and electrical conductivity of hydrogen in Jupiter[J]. Science, 1996, 273(5277):936-938. doi: 10.1126/science.273.5277.936
    [20] NARAYANA C, LUO H, ORLOFF J, et al.Solid hydrogen at 342GPa:no evidence for an alkali metal[J]. Nature, 1998, 393(6680):46-49. doi: 10.1038/29949
    [21] GONCHAROV A F, GREGORYANZ E, HEMLEY R J, et al.Spectroscopic studies of the vibrational and electronic properties of solid hydrogen to 285GPa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(25):14234-14237. doi: 10.1073/pnas.201528198
    [22] LOUBEYRE P, OCCELLI F, LETOULLEC R.Optical studies of solid hydrogen to 320GPa and evidence for black hydrogen[J]. Nature, 2002, 416(6881):613-617. doi: 10.1038/416613a
    [23] GONCHARENKO I, LOUBEYRE P.Neutron and X-ray diffraction study of the broken symmetry phase transition in solid deuterium[J]. Nature, 2005, 435(7046):1206-1209. doi: 10.1038/nature03699
    [24] EREMETS M I, TROYAN I A.Conductive dense hydrogen[J]. Nature Materials, 2011, 10(12):927-931. doi: 10.1038/nmat3175
    [25] KNUDSON M D, DESJARLAIS M P, BECKER A, et al.Direct observation of an abruptinsulator-to-metal transition in dense liquid deuterium[J]. Science, 2015, 348(6242):1455-1460. doi: 10.1126/science.aaa7471
    [26] DALLADAY-SIMPSON P, HOWIE R T, GREGORYANZ E.Evidence for a new phase of dense hydrogen above 325 gigapascals[J]. Nature, 2016, 529(7584):63-67. doi: 10.1038/nature16164
    [27] DIAS R P, SILVERA I F.Observation of the Wigner-Huntington transition to metallic hydrogen[J]. Science, 2017, 355(6326):715-718. doi: 10.1126/science.aal1579
    [28] CHAKRAVARTY S, ROSE J H, WOOD D, et al.Theory of dense hydrogen[J]. Physical Review B, 1981, 24(4):1624-1635. doi: 10.1103/PhysRevB.24.1624
    [29] MIN B I, JANSEN H J, FREEMAN A J.Structural properties, superconductivity, and magnetism of metallic hydrogen[J]. Physical Review B, 1984, 30(9):5076-5083. doi: 10.1103/PhysRevB.30.5076
    [30] MIN B I, JANSEN H J, FREEMAN A J.Pressure-induced electronic and structural phase transitions in solid hydrogen[J]. Physical Review B, 1986, 33(9):6383-6390. doi: 10.1103/PhysRevB.33.6383
    [31] CEPERLEY D M, ALDER B J.Ground state of solid hydrogen at high pressures[J]. Physical Review B, 1987, 36(4):2092-2106. doi: 10.1103/PhysRevB.36.2092
    [32] BARBEE T W Ⅲ, COHEN M L, MARTINS J L.Theory of high-pressure phases of hydrogen[J]. Physical Review Letters, 1989, 62(10):1150-1153. doi: 10.1103/PhysRevLett.62.1150
    [33] SURH M P, BARBEE T W Ⅲ, MAILHIOT C.Zero-point motion and the insulator-metal transition in solid molecular hydrogen[J]. Physical Review Letters, 1993, 70(26):4090-4093. doi: 10.1103/PhysRevLett.70.4090
    [34] EDWARDS B, ASHCROFT N W, LENOSKY T.Layering transitions and the structure of dense hydrogen[J]. Europhysics Letters, 1996, 34(7):519-524. doi: 10.1209/epl/i1996-00489-5
    [35] JOHNSON K A, ASHCROFT N W.Structure and bandgap closure in dense hydrogen[J]. Nature, 2000, 403(6770):632-635. doi: 10.1038/35001024
    [36] PICKARD C J, NEEDS R J.Structure of phase Ⅲ of solid hydrogen[J]. Nature Physics, 2007, 3(7):473-476. doi: 10.1038/nphys625
    [37] TSE J S, KLUG D D.Evidence from molecular dynamics simulations for non-metallic behaviour of solid hydrogen above 160GPa[J]. Nature, 1995, 378(6557):595-597. doi: 10.1038/378595a0
    [38] 芶清泉.金属氢的高压合成机理[J].高压物理学报, 1987, 1(1):3-6. doi: 10.11858/gywlxb.1987.01.001

    GOU Q Q.Mechanism for the metallization of solid hydrogen under high pressure[J]. Chinese Journal of High Pressure Physics, 1987, 1(1):3-6. doi: 10.11858/gywlxb.1987.01.001
    [39] 杨仕清, 苟清泉.金属氢的六角密堆积结构与能量的全量子力学计算[J].科学通报, 1995, 40(19):1759-1762. doi: 10.3321/j.issn:0023-074X.1995.19.008
    [40] 李俊杰, 朱宰万.超高压下固态氢金属转变的理论研究[J].延边大学学报(自然科学版), 1998, 24(1):21-29.

    LI J J, ZHU Z W.The theory studies of solid state hydrogen transition to metallic hydrogen under superhigh pressure[J]. Journal of Yanbian University (Natural Science), 1998, 24(1):21-29.
    [41] 李俊杰, 朱宰万, 金曾孙, 等.固氢金属化转变压力的理论计算[J].高压物理学报, 2001, 15(3):215-220. doi: 10.11858/gywlxb.2001.03.008

    LI J J, ZHU Z W, JIN Z S, et al.Theoretical calculation of transformation pressure in solid hydrogen metallization[J]. Chinese Journal of High Pressure Physics, 2001, 15(3):215-220. doi: 10.11858/gywlxb.2001.03.008
    [42] GENG H Y, SONG H X, LI J F, et al.High-pressure behavior of dense hydrogen up to 3.5TPa from density functional theory calculations[J]. Journal of Applied Physics, 2012, 111(6):063510. doi: 10.1063/1.3694793
    [43] STRAUS D M, ASHCROFT N W.Self-consistent structure of metallic hydrogen[J]. Physical Review Letters, 1977, 38(8):415-418. doi: 10.1103/PhysRevLett.38.415
    [44] NATOLI V, MARTIN R M, CEPERLEY D M.Crystal structure of atomic hydrogen[J]. Physical Review Letters, 1993, 70(13):1952-1955. doi: 10.1103/PhysRevLett.70.1952
    [45] NATOLI V, MARTIN R M, CEPERLEY D.Crystal structure of molecular hydrogen at high pressure[J]. Physical Review Letters, 1995, 74(9):1601-1604. doi: 10.1103/PhysRevLett.74.1601
    [46] BIERMANN S, HOHL D, MARX D.Quantum effects in solid hydrogen at ultra-high pressure[J]. Solid State Communications, 1998, 108(6):337-341. doi: 10.1016/S0038-1098(98)00388-3
    [47] HOWIE R T, GUILLAUME C L, SCHELER T, et al.Mixed molecular and atomic phase of dense hydrogen[J]. Physical Review Letters, 2012, 108(12):125501. doi: 10.1103/PhysRevLett.108.125501
    [48] HOWIE R T, SCHELER T, GUILLAUME C L, et al.Proton tunneling in phase Ⅳ of hydrogen and deuterium[J]. Physical Review B, 2012, 86(21):214104. doi: 10.1103/PhysRevB.86.214104
    [49] LABET V, HOFFMANN R, ASHCROFT N W.A fresh look at dense hydrogen under pressure.Ⅲ.two competing effects and the resulting intra-molecular H-H separation in solid hydrogen under pressure[J]. The Journal of Chemical Physics, 2012, 136(7):074503. doi: 10.1063/1.3679749
    [50] LABET V, HOFFMANN R, ASHCROFT N W.A fresh look at densehydrogen under pressure.Ⅳ.two structural models on the road from paired to monatomic hydrogen, via a possible non-crystalline phase[J]. The Journal of Chemical Physics, 2012, 136(7):074504. doi: 10.1063/1.3679751
    [51] GENG H Y, WU Q.Predicted reentrant melting of dense hydrogen at ultra-high pressures[J]. Scientific Reports, 2016, 6(1):36745. doi: 10.1038/srep36745
    [52] WANG Z, WANG H, TSE J S, et al.Stabilization of H3+ in the high pressure crystalline structure of HnCl (n=2-7)[J]. Chemical Science, 2015, 6(1):522-526. doi: 10.1039/C4SC02802C
    [53] CHEN Y, GENG H Y, YAN X, et al.Prediction of stable ground-state lithium polyhydrides under high pressures[J]. Inorganic Chemistry, 2017, 56(7):3867-3874. doi: 10.1021/acs.inorgchem.6b02709
    [54] GENG H Y, HOFFMANN R, WU Q.Lattice stability and high pressure melting mechanism of dense hydrogen up to 1.5TPa[J]. Physical Review B, 2015, 92(10):104103. doi: 10.1103/PhysRevB.92.104103
    [55] GENG H Y.Accelerating ab initio path integral molecular dynamics with multilevel sampling of potential surface[J]. Journal of Computational Physics, 2015, 283(1):299-311.
    [56] JONES M D, CEPERLEY D M.Crystallization of the one-component plasma at finite temperature[J]. Physical Review Letters, 1996, 76(24):4572-4575. doi: 10.1103/PhysRevLett.76.4572
    [57] GENG H Y, WU Q, SUN Y.Prediction of a mobile solid state in dense hydrogen under high pressures[J]. The Journal of Physical Chemistry Letters, 2017, 8(1):223-228. doi: 10.1021/acs.jpclett.6b02453
    [58] CHEN J, LI X Z, ZHANG Q, et al.Quantum simulation of low temperature metallic liquid hydrogen[J]. Nature Communications, 2013, 4:2064.
    [59] DASH J G.History of the search for continuous melting[J]. Reviews of Modern Physics, 1999, 71(5):1737-1743. doi: 10.1103/RevModPhys.71.1737
    [60] HAN S, CHOI M Y, KUMAR P, et al.Phase transitions in confined water nanofilms[J]. Nature Physics, 2010, 6(9):685-689. doi: 10.1038/nphys1708
    [61] HUBBARD W B.Interiors of the giant planets[J]. Science, 1981, 214(4517):145-149. doi: 10.1126/science.214.4517.145
    [62] SAUMON D, CHABRIER G.Fluid hydrogen at high density:pressure ionization[J]. Physical Review A, 1992, 46(4):2084-2100. doi: 10.1103/PhysRevA.46.2084
    [63] LORENZEN W, HOLST B, REDMER R.First-order liquid-liquid phase transition in dense hydrogen[J]. Physical Review B, 2010, 82(19):195107. doi: 10.1103/PhysRevB.82.195107
    [64] PIERLEONI C, MORALES M A, RILLO G, et al.Liquid-liquid phase transition in hydrogen by couple delectron-ion Monte Carlo simulations[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(18):4953-4957. doi: 10.1073/pnas.1603853113
    [65] MAZZOLA G, SORELLA S.Distinct metallization and atomization transitions in dense liquid hydrogen[J]. Physical Review Letters, 2015, 114(10):105701. doi: 10.1103/PhysRevLett.114.105701
    [66] DZYABURA V, ZAGHOO M, SILVERA I F.Evidence of a liquid-liquid phase transition in hot dense hydrogen[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(20):8040-8044. doi: 10.1073/pnas.1300718110
    [67] OHTA K, ICHIMARU K, EINAGA M, et al.Phase boundary of hot dense fluid hydrogen[J]. Scientific Reports, 2015, 1(1):16560.
    [68] EREMETS M I, TROYAN I A, DROZDOV A P. Low temperature phase diagram of hydrogen at pressure up to 380GPa: a possible metallic phase at 360GPa and 200K[J/OL]. (2016-01-18)[2017-11-14]. http://arxiv.org/abs/1601.04479.
    [69] ZAGHOO M, SALAMAT A, SILVERA I F.Evidence for a first-order phase transition to metallic hydrogen[J]. Physical Review B, 2016, 93(15):155128. doi: 10.1103/PhysRevB.93.155128
    [70] BROVMAN E G, KAGAN Y, KHOLAS A.Structure of metallic hydrogen at zero pressure[J]. Soviet Journal of Experimental & Theoretical Physics, 1972, 34(6):1300-1315.
    [71] BROVMAN E G, KAGAN Y, KHOLAS A.Properties of metallic hydrogen under pressure[J]. Soviet Journal of Experimental & Theoretical Physics, 1972, 35(4):783-787.
    [72] LOUBEYRE P, CELLIERS P M, COLLINS G W, et al.Coupling static and dynamic compressions:first measurements in dense hydrogen[J]. High Pressure Research, 2004, 24(1):25-31. doi: 10.1080/08957950310001635792
    [73] JEANLOZ R, CELLIERS P M, COLLINS G W, et al.Achieving high-density states through shock-wave loading of precompressed samples[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22):9172-9177. doi: 10.1073/pnas.0608170104
    [74] CHEN Y M, CHEN X R, WU Q, et al.Compression and phase diagram of lithium hydrides at elevated pressures and temperatures by first-principles calculation[J]. Journal of Physics D:Applied Physics, 2016, 49(35):355305. doi: 10.1088/0022-3727/49/35/355305
    [75] CAILLABET L, MAZEVET S, LOUBEYRE P.Multiphase equation of state of hydrogen from ab initio calculations in the range 0.2 to 5g/cc up to 10eV[J]. Physical Review B, 2011, 83(9):094101. doi: 10.1103/PhysRevB.83.094101
    [76] ZHA C S, LIU H, TSE J S, et al.Melting and high P-T transitions of hydrogen to 300GPa[J]. Physical Review Letters, 2017, 119(7):075302. doi: 10.1103/PhysRevLett.119.075302
    [77] CHAKRAVARTY S, ASHCROFT N W.Ground state of metallic hydrogen[J]. Physical Review B, 1978, 18(9):4588-4597. doi: 10.1103/PhysRevB.18.4588
  • 加载中
图(10)
计量
  • 文章访问数:  16003
  • HTML全文浏览量:  3573
  • PDF下载量:  555
出版历程
  • 收稿日期:  2017-11-14
  • 修回日期:  2017-11-24

目录

/

返回文章
返回