钽罩结构参数对EFP成型及侵彻性能的控制

郭腾飞 李伟兵 李文彬 洪晓文

郭腾飞, 李伟兵, 李文彬, 洪晓文. 钽罩结构参数对EFP成型及侵彻性能的控制[J]. 高压物理学报, 2018, 32(3): 035104. doi: 10.11858/gywlxb.20170667
引用本文: 郭腾飞, 李伟兵, 李文彬, 洪晓文. 钽罩结构参数对EFP成型及侵彻性能的控制[J]. 高压物理学报, 2018, 32(3): 035104. doi: 10.11858/gywlxb.20170667
GUO Tengfei, LI Weibing, LI Wenbin, HONG Xiaowen. Controlling Effect of Tantalum Liner's Structural Parameters on EFP Formation and Penetration Performance[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035104. doi: 10.11858/gywlxb.20170667
Citation: GUO Tengfei, LI Weibing, LI Wenbin, HONG Xiaowen. Controlling Effect of Tantalum Liner's Structural Parameters on EFP Formation and Penetration Performance[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035104. doi: 10.11858/gywlxb.20170667

钽罩结构参数对EFP成型及侵彻性能的控制

doi: 10.11858/gywlxb.20170667
基金项目: 

江苏省普通高校研究生科研创新计划项目 KYCX17_0390

江苏省"青蓝工程"项目 

详细信息
    作者简介:

    郭腾飞(1993—), 男, 硕士研究生, 主要从事聚能装药战斗部技术研究.E-mail:nustgtf@126.com

    通讯作者:

    李伟兵(1982—), 男, 博士, 副研究员, 博士生导师, 主要从事弹丸的终点效应与目标毁伤技术研究.E-mail:njustlwb@163.com

  • 中图分类号: TJ410.3

Controlling Effect of Tantalum Liner's Structural Parameters on EFP Formation and Penetration Performance

  • 摘要: 针对钽材料在成型装药战斗部中的应用问题,采用LS-DYNA仿真软件,研究了弧锥结合形钽药型罩结构参数(药型罩锥角、药型罩壁厚和药型罩圆弧半径)对EFP成型及侵彻性能的影响。揭示了各结构参数对EFP成型性能的控制规律,其中药型罩锥角控制EFP的轴向拉伸及径向收缩的能力,药型罩壁厚控制EFP的头部速度及尾部断裂与外张情况,药型罩圆弧半径控制EFP的头部形态及其绝对实心长度。获得了成型性能较佳的钽罩结构参数取值范围,其中药型罩锥角为143°~147°,药型罩壁厚、圆弧半径分别为0.024~0.026倍和0.7~0.8倍装药口径。各结构参数对EFP侵彻深度及侵彻孔径影响的主次顺序分别为:药型罩圆弧半径、药型罩锥角、药型罩壁厚和药型罩锥角、药型罩壁厚、药型罩圆弧半径。确定了EFP成型及侵彻性能均较佳的钽罩结构参数组合:药型罩锥角为145°,药型罩壁厚、圆弧半径分别为0.025、0.70倍装药口径。

     

  • 图  钽罩EFP战斗部结构图

    Figure  1.  Diagram of tantalum liner EFP warhead

    图  有限元模型

    Figure  2.  Finite element model

    图  EFP成型性能指标示意图

    Figure  3.  Schematic diagram of molding performance indicator of EFP

    图  头部速度随药型罩锥角的变化

    Figure  4.  Variation of vtip along α

    图  EFP成型指标随药型罩锥角的变化曲线

    Figure  5.  Variation of molding performance indicator of EFP along α

    图  头部速度随药型罩壁厚的变化

    Figure  6.  Variation of vtip along s

    图  EFP成型指标随药型罩壁厚的变化曲线

    Figure  7.  Variation of molding performance indicator of EFP along s

    图  头部速度随药型罩圆弧半径的变化

    Figure  8.  Variation of vtip along R

    图  EFP成型指标随药型罩圆弧半径的变化曲线

    Figure  9.  Variation of molding performance indicator of EFP along R

    图  10  不同因素水平下的EFP侵彻性能指标

    Figure  10.  Indicator of penetration performance from EFP along factors

    表  1  装药及壳体结构参数设计

    Table  1.   Design of charge and shell’s structural parameters

    Dk/mm H/mm β/(°) t/mm
    100 90 45 5
    下载: 导出CSV

    表  2  钽材料J-C本构方程参数[12]

    Table  2.   Parameters of J-C constitutive equation for tantalum[12]

    A/MPa B/MPa n C m
    142 164 0.314 8 0.057 0.883 6
    下载: 导出CSV

    表  3  空气、壳体及炸药材料参数[13]

    Table  3.   Parameters of air, shell and explosive[13]

    Air C γ0 S1 S2 S3 ρ/(kg·m-3)
    0.344 1.4 0 0 0 1.25
    Shell (45 steel) A/MPa B/MPa C n m ρ/(g·cm-3)
    496 434 0.014 0.26 1.03 7.83
    Explosive (JH-2) D/(km·s-1) pCJ/GPa A/GPa B/GPa G ρ/(g·cm-3)
    8.425 29.66 854.5 2.05 - 1.845
    下载: 导出CSV

    表  4  正交设计各因素水平表

    Table  4.   Orthogonal design at each level

    Level Factor
    α s R
    1 143 2.4 70
    2 145 2.5 75
    3 147 2.6 80
    下载: 导出CSV

    表  5  正交计算表(200 μs)

    Table  5.   Orthogonal table (200 μs)

    Project Factor Indicator of penetration performance
    α s R P/mm D/mm
    1 1 1 1 143.26 50.16
    2 1 2 2 137.37 52.44
    3 1 3 3 135.91 49.36
    4 2 1 2 131.38 49.24
    5 2 2 3 130.88 49.98
    6 2 3 1 148.01 50.12
    7 3 1 3 129.46 50.78
    8 3 2 1 131.77 52.06
    9 3 3 2 131.38 50.88
    下载: 导出CSV

    表  6  极差分析表

    Table  6.   Polar difference analysis

    Result of analysis Indicator of P Indicator of D
    α s R α s R
    K1 416.54 404.1 423.04 151.96 150.18 152.34
    K2 410.27 400.02 400.13 149.34 154.48 152.56
    K3 392.61 415.3 396.25 153.72 150.36 150.12
    K1/3 138.85 134.7 141.01 50.65 50.06 50.78
    K2/3 136.76 133.34 133.38 49.78 51.49 50.85
    K3/3 130.87 138.43 132.08 51.24 50.12 50.04
    S 7.98 5.09 8.93 1.46 1.43 0.81
    下载: 导出CSV

    表  7  优化方案下钽EFP的成型及侵彻性能参数

    Table  7.   Formation and penetration performance parameters of Ta EFP in optimization

    Formulation picture Parameter of forming performance Parameter of penetration performance
    vtip/(m·s-1) l/Lp d/Dp P/Dk D/Dk
    1 973 0.55 0.67 1.46 0.51
    下载: 导出CSV
  • [1] 彭海建, 闫晓东, 李德富.钽在破甲弹药型罩中的应用[J].稀有金属, 2006, 30(5):678-681. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_xyjs200605022

    PENG H J, YAN X D, LI D F.Application of tantalum as shaped charge liner material[J].Chinese Journal of Rare Metals, 2006, 30(5):678-681. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_xyjs200605022
    [2] ZERILLI F J, ARMSTRONG R W.Description of tantalum deformation behavior by dislocation mechanics based constitutive relations[J].Journal of Applied Physics, 1990, 68(4):1580-1591. doi: 10.1063/1.346636
    [3] BERGH M, HELTE A.Materials models for tantalum-a validation study for EFP application[C]//26th International Symposium on Ballistics.Miami, FL, 2011:93-103.
    [4] 王兵.爆炸成形弹用药型罩材料的研制动向[J].国外兵器动态, 1996(3):10. http://www.docin.com/p-9023858.html

    WANG B.Developing trends of material in shaped charge liner for explosively formed projectile[J].Foreign Weapon Trends, 1996(3):10. http://www.docin.com/p-9023858.html
    [5] WEIMANN K, BLACHE A.Terminal ballistics of EFPs with high L/D-ratio[C]//17th International Symposium on Ballistics.Midrand, South Africa, 1998:215-224.
    [6] RONDOT F.Terminal ballistics of EFPs-a numerical comparative study between hollow and solid simulants[C]//19th International Symposium on Ballistics.Interlaken, Switzerland, 2001:1455-1461.
    [7] 张廷杰, 张德尧, 丁旭.高钨含量钽基合金力学性能的研究[J].稀有金属材料与工程, 1996, 25(4):5-10. http://www.cnki.com.cn/Article/CJFDTOTAL-COSE604.001.htm

    ZHANG T J, ZHANG D Y, DING X.Study on mechanical properties of several tantalum alloys with higher tungsten content[J].Rare Metal Materials and Engineering, 1996, 25(4):5-10. http://www.cnki.com.cn/Article/CJFDTOTAL-COSE604.001.htm
    [8] 张廷杰, 张德尧, 丁旭.强冲击载荷下Ta-W合金的塑变特征[J].稀有金属材料与工程, 1997, 26(2):12-17. http://www.cnki.com.cn/Article/CJFDTOTAL-COSE702.002.htm

    ZHANG T J, ZHANG D Y, DING X.Plastic deformation characteristic of Ta-W alloy at shock loading[J].Rare Metal Materials and Engineering, 1997, 26(2):12-17. http://www.cnki.com.cn/Article/CJFDTOTAL-COSE702.002.htm
    [9] 郭扬波, 唐志平, 程经毅.一种基于位错机制的动态应变时效模型[J].固体力学学报, 2002, 23(3):249-256. http://jz.docin.com/p-505840782.html

    GUO Y B, TANG Z P, CHENG J Y.A dislocation-mechanicals-based constitutive model for dynamic strain aging[J].Acta Mechanica Solida Sinica, 2002, 23(3):249-256. http://jz.docin.com/p-505840782.html
    [10] 李伟兵, 李文彬, 王晓鸣, 等.药型罩结构参数对多模毁伤元形成的影响[J].弹道学报, 2009, 21(1):19-23. http://d.old.wanfangdata.com.cn/Periodical/ddxb200901005

    LI W B, LI W B, WANG X M, et al.Effect of liner configuration parameter on formation of multimode penetrator[J].Journal of Ballistics, 2009, 21(1):19-23. http://d.old.wanfangdata.com.cn/Periodical/ddxb200901005
    [11] 李伟兵, 樊菲, 王晓鸣, 等.杆式射流与射流转换的双模战斗部优化设计[J].兵工学报, 2013, 34(12):1500-1506. doi: 10.3969/j.issn.1000-1093.2013.12.003

    LI W B, FAN F, WANG X M, et al.Optimal design of dual mode warhead for jetting penetrator and jet conversion[J].Acta Armamentarii, 2013, 34(12):1500-1506. doi: 10.3969/j.issn.1000-1093.2013.12.003
    [12] 樊雪飞. 药型罩材料性能对双模毁伤元成型影响研究[D]. 南京: 南京理工大学, 2017: 21-22. http://cdmd.cnki.com.cn/Article/CDMD-10288-1017056933.htm

    FAN X F.Research on effect of dual-mode damage element formation from liner's material properties[D].Nanjing:Nanjing University of Science and Technology, 2017:21-22. http://cdmd.cnki.com.cn/Article/CDMD-10288-1017056933.htm
    [13] LI W B, LI W B, WANG X M.The effect of annular multi-point initiation the formation and penetration of an explosively formed penetrator[J].International Journal of Impact Engineering, 2010, 37(4):414-424. doi: 10.1016/j.ijimpeng.2009.08.008
    [14] 刘建青, 顾文彬, 徐浩铭, 等.多点起爆装药结构参数对尾翼EFP成型的影响[J].含能材料, 2014, 22(5):594-599. http://d.old.wanfangdata.com.cn/Periodical/hncl201405005

    LIU J Q, GU W B, XU H M, et al.Effects of multi-point initiation charge configuration parameters on EFP with fins formation[J].Chinese Journal of Energetic Materials, 2014, 22(5):594-599. http://d.old.wanfangdata.com.cn/Periodical/hncl201405005
    [15] 正交设计试验法编写组.正交试验设计方法[M].上海:上海科学技术出版社, 1979.

    Composer Group on Design Method for Orthogonal Test.Design method for orthogonal test[M].Shanghai:Shanghai Publishing House of Science and Technology, 1979.
    [16] 袁志发, 周静芋.实验设计与分析[M].北京:高等教育出版社, 2000.

    YUAN Z F, ZHOU J Y.Design and analysis of experiment[M].Beijing:Higher Education Press, 2000.
  • 加载中
图(10) / 表(7)
计量
  • 文章访问数:  8697
  • HTML全文浏览量:  3284
  • PDF下载量:  324
出版历程
  • 收稿日期:  2017-10-30
  • 修回日期:  2017-11-16

目录

    /

    返回文章
    返回