Controlling Effect of Tantalum Liner's Structural Parameters on EFP Formation and Penetration Performance
-
摘要: 针对钽材料在成型装药战斗部中的应用问题,采用LS-DYNA仿真软件,研究了弧锥结合形钽药型罩结构参数(药型罩锥角、药型罩壁厚和药型罩圆弧半径)对EFP成型及侵彻性能的影响。揭示了各结构参数对EFP成型性能的控制规律,其中药型罩锥角控制EFP的轴向拉伸及径向收缩的能力,药型罩壁厚控制EFP的头部速度及尾部断裂与外张情况,药型罩圆弧半径控制EFP的头部形态及其绝对实心长度。获得了成型性能较佳的钽罩结构参数取值范围,其中药型罩锥角为143°~147°,药型罩壁厚、圆弧半径分别为0.024~0.026倍和0.7~0.8倍装药口径。各结构参数对EFP侵彻深度及侵彻孔径影响的主次顺序分别为:药型罩圆弧半径、药型罩锥角、药型罩壁厚和药型罩锥角、药型罩壁厚、药型罩圆弧半径。确定了EFP成型及侵彻性能均较佳的钽罩结构参数组合:药型罩锥角为145°,药型罩壁厚、圆弧半径分别为0.025、0.70倍装药口径。Abstract: Aiming at the problems concerning the application of tantalum in a shaped charge warhead, we investigated the influences of the arc-cone tantalum liner's structural parameters (cone angle, wall thickness and radius of curvature) on the formation and penetration performance of EFP using the LS-DYNA finite element software, revealed how these various structural parameters affected the formation performance of EFP:the cone angle of the liner determines the capacity of the axial tension and the radial shrinkage of EFP, the head velocity and tail fracture and outward expansion of EFP are determined by the thickness of the liner, the head shape and the absolute solid length of EFP are determined by the radius of the curvature.The range of the structural parameters of the tantalum liner with better formation performance of EFP was obtained:the cone angle ranged from 143° to 147°, the thickness and radius of the curvature ranged from 0.024 to 0.026 and 0.7 to 0.8 times of the charge diameter.The order was found out in which various structural parameters exert their influence on the penetration depth and aperture of EFP:the radius of the curvature, the cone angle, the wall thickness and cone angle, the wall thickness, the radius of the curvature.The optimal combination of the structural parameters of the tantalum liner that would bring about a better formation and penetration performance of EFP was proposed:the cone angle is taken for 145°, the thickness and radius of the curvature are taken for 0.025 and 0.70 times that of the charge diameter.
-
Key words:
- EFP /
- tantalum /
- liner /
- solid length /
- numerical simulation
-
表 1 装药及壳体结构参数设计
Table 1. Design of charge and shell’s structural parameters
Dk/mm H/mm β/(°) t/mm 100 90 45 5 A/MPa B/MPa n C m 142 164 0.314 8 0.057 0.883 6 Air C γ0 S1 S2 S3 ρ/(kg·m-3) 0.344 1.4 0 0 0 1.25 Shell (45 steel) A/MPa B/MPa C n m ρ/(g·cm-3) 496 434 0.014 0.26 1.03 7.83 Explosive (JH-2) D/(km·s-1) pCJ/GPa A/GPa B/GPa G ρ/(g·cm-3) 8.425 29.66 854.5 2.05 - 1.845 表 4 正交设计各因素水平表
Table 4. Orthogonal design at each level
Level Factor α s R 1 143 2.4 70 2 145 2.5 75 3 147 2.6 80 表 5 正交计算表(200 μs)
Table 5. Orthogonal table (200 μs)
Project Factor Indicator of penetration performance α s R P/mm D/mm 1 1 1 1 143.26 50.16 2 1 2 2 137.37 52.44 3 1 3 3 135.91 49.36 4 2 1 2 131.38 49.24 5 2 2 3 130.88 49.98 6 2 3 1 148.01 50.12 7 3 1 3 129.46 50.78 8 3 2 1 131.77 52.06 9 3 3 2 131.38 50.88 表 6 极差分析表
Table 6. Polar difference analysis
Result of analysis Indicator of P Indicator of D α s R α s R K1 416.54 404.1 423.04 151.96 150.18 152.34 K2 410.27 400.02 400.13 149.34 154.48 152.56 K3 392.61 415.3 396.25 153.72 150.36 150.12 K1/3 138.85 134.7 141.01 50.65 50.06 50.78 K2/3 136.76 133.34 133.38 49.78 51.49 50.85 K3/3 130.87 138.43 132.08 51.24 50.12 50.04 S 7.98 5.09 8.93 1.46 1.43 0.81 表 7 优化方案下钽EFP的成型及侵彻性能参数
Table 7. Formation and penetration performance parameters of Ta EFP in optimization
Formulation picture Parameter of forming performance Parameter of penetration performance vtip/(m·s-1) l/Lp d/Dp P/Dk D/Dk 1 973 0.55 0.67 1.46 0.51 -
[1] 彭海建, 闫晓东, 李德富.钽在破甲弹药型罩中的应用[J].稀有金属, 2006, 30(5):678-681. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_xyjs200605022PENG H J, YAN X D, LI D F.Application of tantalum as shaped charge liner material[J].Chinese Journal of Rare Metals, 2006, 30(5):678-681. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_xyjs200605022 [2] ZERILLI F J, ARMSTRONG R W.Description of tantalum deformation behavior by dislocation mechanics based constitutive relations[J].Journal of Applied Physics, 1990, 68(4):1580-1591. doi: 10.1063/1.346636 [3] BERGH M, HELTE A.Materials models for tantalum-a validation study for EFP application[C]//26th International Symposium on Ballistics.Miami, FL, 2011:93-103. [4] 王兵.爆炸成形弹用药型罩材料的研制动向[J].国外兵器动态, 1996(3):10. http://www.docin.com/p-9023858.htmlWANG B.Developing trends of material in shaped charge liner for explosively formed projectile[J].Foreign Weapon Trends, 1996(3):10. http://www.docin.com/p-9023858.html [5] WEIMANN K, BLACHE A.Terminal ballistics of EFPs with high L/D-ratio[C]//17th International Symposium on Ballistics.Midrand, South Africa, 1998:215-224. [6] RONDOT F.Terminal ballistics of EFPs-a numerical comparative study between hollow and solid simulants[C]//19th International Symposium on Ballistics.Interlaken, Switzerland, 2001:1455-1461. [7] 张廷杰, 张德尧, 丁旭.高钨含量钽基合金力学性能的研究[J].稀有金属材料与工程, 1996, 25(4):5-10. http://www.cnki.com.cn/Article/CJFDTOTAL-COSE604.001.htmZHANG T J, ZHANG D Y, DING X.Study on mechanical properties of several tantalum alloys with higher tungsten content[J].Rare Metal Materials and Engineering, 1996, 25(4):5-10. http://www.cnki.com.cn/Article/CJFDTOTAL-COSE604.001.htm [8] 张廷杰, 张德尧, 丁旭.强冲击载荷下Ta-W合金的塑变特征[J].稀有金属材料与工程, 1997, 26(2):12-17. http://www.cnki.com.cn/Article/CJFDTOTAL-COSE702.002.htmZHANG T J, ZHANG D Y, DING X.Plastic deformation characteristic of Ta-W alloy at shock loading[J].Rare Metal Materials and Engineering, 1997, 26(2):12-17. http://www.cnki.com.cn/Article/CJFDTOTAL-COSE702.002.htm [9] 郭扬波, 唐志平, 程经毅.一种基于位错机制的动态应变时效模型[J].固体力学学报, 2002, 23(3):249-256. http://jz.docin.com/p-505840782.htmlGUO Y B, TANG Z P, CHENG J Y.A dislocation-mechanicals-based constitutive model for dynamic strain aging[J].Acta Mechanica Solida Sinica, 2002, 23(3):249-256. http://jz.docin.com/p-505840782.html [10] 李伟兵, 李文彬, 王晓鸣, 等.药型罩结构参数对多模毁伤元形成的影响[J].弹道学报, 2009, 21(1):19-23. http://d.old.wanfangdata.com.cn/Periodical/ddxb200901005LI W B, LI W B, WANG X M, et al.Effect of liner configuration parameter on formation of multimode penetrator[J].Journal of Ballistics, 2009, 21(1):19-23. http://d.old.wanfangdata.com.cn/Periodical/ddxb200901005 [11] 李伟兵, 樊菲, 王晓鸣, 等.杆式射流与射流转换的双模战斗部优化设计[J].兵工学报, 2013, 34(12):1500-1506. doi: 10.3969/j.issn.1000-1093.2013.12.003LI W B, FAN F, WANG X M, et al.Optimal design of dual mode warhead for jetting penetrator and jet conversion[J].Acta Armamentarii, 2013, 34(12):1500-1506. doi: 10.3969/j.issn.1000-1093.2013.12.003 [12] 樊雪飞. 药型罩材料性能对双模毁伤元成型影响研究[D]. 南京: 南京理工大学, 2017: 21-22. http://cdmd.cnki.com.cn/Article/CDMD-10288-1017056933.htmFAN X F.Research on effect of dual-mode damage element formation from liner's material properties[D].Nanjing:Nanjing University of Science and Technology, 2017:21-22. http://cdmd.cnki.com.cn/Article/CDMD-10288-1017056933.htm [13] LI W B, LI W B, WANG X M.The effect of annular multi-point initiation the formation and penetration of an explosively formed penetrator[J].International Journal of Impact Engineering, 2010, 37(4):414-424. doi: 10.1016/j.ijimpeng.2009.08.008 [14] 刘建青, 顾文彬, 徐浩铭, 等.多点起爆装药结构参数对尾翼EFP成型的影响[J].含能材料, 2014, 22(5):594-599. http://d.old.wanfangdata.com.cn/Periodical/hncl201405005LIU J Q, GU W B, XU H M, et al.Effects of multi-point initiation charge configuration parameters on EFP with fins formation[J].Chinese Journal of Energetic Materials, 2014, 22(5):594-599. http://d.old.wanfangdata.com.cn/Periodical/hncl201405005 [15] 正交设计试验法编写组.正交试验设计方法[M].上海:上海科学技术出版社, 1979.Composer Group on Design Method for Orthogonal Test.Design method for orthogonal test[M].Shanghai:Shanghai Publishing House of Science and Technology, 1979. [16] 袁志发, 周静芋.实验设计与分析[M].北京:高等教育出版社, 2000.YUAN Z F, ZHOU J Y.Design and analysis of experiment[M].Beijing:Higher Education Press, 2000.