Dynamic Compression Properties of 30CrMnMoRE and 30CrMnSi
-
摘要: 针对合金材料在高冲击作用下的力学响应,采用分离式Hopkinson压杆(SHPB)系统确定武器弹药中常用的高强度合金30CrMnMoRE和30CrMnSi在不同应变率下的动态应力-应变关系,得到其动态应力-应变曲线及屈服强度,并结合Johnson-Cook模型对其动态本构进行拟合。结果表明,两种材料的应力-应变关系、强度等参数表现出明显的应变率相关性,随着应变率的提升,材料得到进一步强化,30CrMnMoRE的动态强度提高约79%,30CrMnSi的动态强度提高约50%。Abstract: We conducted tests on the dynamic stress-strain relationship of both 30CrMnMoRE and 30CrMnSi at different strain rates using the split Hopkinson pressure bar (SHPB) system to study the mechanical response of alloy metal under high impact, and obtained their dynamic stress-strain curves and yield strength.And combined with the Johnson-Cook model, we obtained the dynamic constitutive model of the two materials.The test results show that the stress-strain relationship and the strength parameters of the two steels have obvious strain rate dependence.With the increase of the strain rate, the dynamic strength of 30CrMnMoRE increased by about 79%, and that of 30CrMnSi increased about by 50%.
-
Key words:
- impact /
- split Hopkinson pressure bar (SHPB) /
- high strain rate /
- constitutive model
-
图 1 SHPB系统(1.子弹(撞击杆);2.平行光源;3.光控继电器;4.振荡测速仪;5.入射杆;6.试件;7.应变片;8.透射杆;9.吸收杆;10.阻尼器;11.超动态应变仪;12.智能测速分析仪;13.数据处理系统)
Figure 1. Configuration of SHPB (1.Strike bar; 2.Source of parallel light; 3.Photorelay; 4.Velometer; 5.Incident bar; 6.Sample; 7.Strain gage; 8.Transmitted bar; 9.Momentum trap bar; 10.Buffer; 11.Amplifier; 12.Intelligent speed analyzer; 13.Data processing system)
表 1 30CrMnMoRE和30CrMnSi材料性能
Table 1. Material property of 30CrMnMoRE and 30CrMnSi
Material σb/MPa σs/MPa δ5/% η/% 30CrMnMoRE ≥1 410 ≥1 180 ≥8 ≥50 30CrMnSi ≥1 080 ≥885 ≥10 ≥45 表 2 试件设计
Table 2. Design of specimens
Material Specimen diameter/mm Specimen length/mm Length-diameter ratio 30CrMnMoRE 10
35
1.50.5 30CrMnSi 10
35
1.50.5 -
[1] 陆利明, 壮云乾, 蒋国昌.高氮钢的研究和发展[J].特殊钢, 1996, 17(3):1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-TSGA603.000.htmLU L M, ZHUANG Y Q, JIANG G C.Research and development of high nitrogen steel[J].Special Steel, 1996, 17(3):1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-TSGA603.000.htm [2] 王晓强, 朱锡.舰船用钢的抗弹道冲击性能研究进展[J].中国造船, 2010, 51(1):227-236. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgzc201001029WANG X Q, ZHU X.Review on ballistic impact resistance of ship building steel[J].Shipbuilding of China, 2010, 51(1):227-236. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgzc201001029 [3] 陈威, 李吉峰, 朱磊.聚能射流侵彻下船舰钢与均质钢的等效关系[J].装甲兵工程学院学报, 2010, 24(2):45-48. http://www.cqvip.com/QK/87527X/201002/1001204617.htmlCHEN W, LI J F, ZHU L.Equivalent relation of ship steel and homogeneous steel under penetration of shaped charge jet[J].Journal of Academy of Armored Force Engineering, 2010, 24(2):45-48. http://www.cqvip.com/QK/87527X/201002/1001204617.html [4] 杨超, 田时雨.装甲钢动态性能与抗弹性能研究[J].兵器材料科学与工程, 2002, 25(1):3-7. http://mall.cnki.net/magazine/Article/BCKG200201000.htmYANG C, TIAN S Y.Study of relation between dynamic characteristics and penetrating resistance of armour steel[J].Ordnance Material Science and Engineering, 2002, 25(1):3-7. http://mall.cnki.net/magazine/Article/BCKG200201000.htm [5] 王春奎, 黄晨光, 孙原龙, 等.升温率和应变率对30CrMnSi拉伸强度的影响[J].金属学报, 1995, 31(10):475-478. http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB510.006.htmWANG C K, HUANG C G, SUN Y L, et al.Influence of heating rate and strain rate of tensile strength of 30CrMnSi[J].Acta Metallurgica Sinica, 1995, 31(10):475-478. http://www.cnki.com.cn/Article/CJFDTOTAL-JSXB510.006.htm [6] 胡时胜.Hopkinson压杆实验技术的应用进展[J].实验力学, 2005, 12(4):589-594. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sylx200504016HU S S.The application development of experimental technique of Hopkinson pressure bar[J].Journal of Experimental Mechanics, 2005, 12(4):589-594. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sylx200504016 [7] 姜锡权, 胡时胜. 霍普金森杆试验技术发展综述[C]//Hopkinson杆试验技术研讨会会议论文集, 2007: 147-158. [8] 王礼立.应力波基础[M].北京:国防工业出版社, 2005:8.WANG L L.Foundation of stress waves[M].Beijing:National Defense Industry Press, 2005:8. [9] 宋立, 胡时胜.SHPB数据处理中的二波法与三波法[J].爆炸与冲击, 2005, 25(4):368-373. doi: 10.11883/1001-1455(2005)04-0368-06SONG L, HU S S.Two-wave and three-wave method in SHPB data processing[J].Explosion and Shock Waves, 2005, 25(4):368-373. doi: 10.11883/1001-1455(2005)04-0368-06 [10] DAVIES E D H, HUNTER S C.The dynamic compression testing of solids by the method of the split Hopkinson pressure bar[J].Journal of the Mechanics and Physics of Solids, 1963, 11(3):155-179. doi: 10.1016/0022-5096(63)90050-4 [11] SAMANTA S K.Dynamic deformation of aluminium and copper at elevated temperatures[J].Journal of the Mechanics and Physics of Solids, 1971, 19(3):117-122. doi: 10.1016/0022-5096(71)90023-8 [12] 王璀轶, 王扬卫.Al2O3陶瓷分离式霍普金森压杆横应变率动态压缩试验研究[J].兵工学报, 2009, 30(10):1349-1351. http://image.sciencenet.cn/olddata/kexue.com.cn/bbs/upload/200833202436205.docWANG C Y, WANG Y W.SHPB dynamic compression test of Al2O3 ceramics under constant strain rates[J].Acta Armamentarii, 2009, 30(10):1349-1351. http://image.sciencenet.cn/olddata/kexue.com.cn/bbs/upload/200833202436205.doc [13] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strain rates and high temperaturesr[C]//Proceedings of the Seventh International Symposium on Ballistics. Hague, Netherlands: ADPA, 1983: 541-547.