弹黏塑性热点模型的冲击起爆临界条件

覃锦程 裴红波 李星翰 张旭 赵锋

覃锦程, 裴红波, 李星翰, 张旭, 赵锋. 弹黏塑性热点模型的冲击起爆临界条件[J]. 高压物理学报, 2018, 32(3): 035202. doi: 10.11858/gywlxb.20170656
引用本文: 覃锦程, 裴红波, 李星翰, 张旭, 赵锋. 弹黏塑性热点模型的冲击起爆临界条件[J]. 高压物理学报, 2018, 32(3): 035202. doi: 10.11858/gywlxb.20170656
QIN Jincheng, PEI Hongbo, LI Xinghan, ZHANG Xu, ZHAO Feng. Shock Initiation Thresholds of Heterogeneous Explosives with Elastic-Visco-Plastic Hot Spot Model[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035202. doi: 10.11858/gywlxb.20170656
Citation: QIN Jincheng, PEI Hongbo, LI Xinghan, ZHANG Xu, ZHAO Feng. Shock Initiation Thresholds of Heterogeneous Explosives with Elastic-Visco-Plastic Hot Spot Model[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035202. doi: 10.11858/gywlxb.20170656

弹黏塑性热点模型的冲击起爆临界条件

doi: 10.11858/gywlxb.20170656
基金项目: 

国家自然科学基金 11602248

国防科工局技术基础项目 JSZL2015212C001

科学挑战专题 TZ2018001

详细信息
    作者简介:

    覃锦程(1993-), 男, 硕士研究生, 主要从事炸药爆轰反应区研究.E-mail:jc_qin@163.com

    通讯作者:

    裴红波(1987-), 男, 博士, 助理研究员, 主要从事炸药基础爆轰性能研究.E-mail:hongbo2751@sina.com

  • 中图分类号: TJ55;O38

Shock Initiation Thresholds of Heterogeneous Explosives with Elastic-Visco-Plastic Hot Spot Model

  • 摘要: 非均质炸药冲击起爆临界条件是武器传爆系列设计以及安全性能评估中十分关注的问题。基于Kim弹黏塑性热点模型,通过数值求解冲击波作用下炸药局部热点的温升模型,获得了TATB和HMX基炸药在不同冲击压力作用下的冲击起爆临界阈值,定量分析了孔隙度对炸药冲击起爆临界阈值的影响。与实验数据对比,结果表明:在1~10 GPa范围内,采用该模型计算得到的冲击起爆临界阈值与一维短脉冲试验相符,对应的炸药冲击起爆临界阈值近似为一常量;当压力大于10 GPa时,非均匀炸药的冲击起爆机制开始由局部热点机制向整体均匀加热机制转变;在一定压力范围内,炸药孔隙度越大,冲击起爆临界阈值越小。

     

  • 图  热点形成过程温升计算结果

    Figure  1.  Calculated result of temperature rising in the hot-spot formative process

    图  热点形成过程中导致温升的化学反应和塑性功作用比例

    Figure  2.  Proportion of temperature rising due to chemical reaction and plastic work in the hot-spot formative process

    图  不同孔隙度下PBX-9404的冲击起爆阈值

    Figure  3.  Initiation thresholds of PBX-9404 with different porosities

    表  1  计算炸药初始温度所需状态方程参数

    Table  1.   JWL & HOM EOS parameters for calculating initial temperature of unreacted explosives

    Explosive A/GPa B/GPa R1 R2 ω cV/(μJ·kg-1·K-1)
    HMX[13] 6 969 -172.7 7.8 3.9 0.857 8 25.05
    TATB[14] 632 07 -4.472 11.3 1.13 0.893 8 24.87
    Explosive FS GS HS KS JS
    HMX[15] -9.042 -71.32 -125.2 -92.04 -22.19
    TATB[15] -8.868 -79.74 -159.4 -135.4 -39.13
    下载: 导出CSV

    表  2  Kim空穴坍塌模型参数

    Table  2.   Parameters for Kim's pore collapse model

    Explosive Frequency factor K0/Ms Activation temperature T*/K Specific heat cp/(103m2·s-2·K-1) Density ρ/(g·cm-3) Shear yield strength k/MPa
    HMX[16] 50 26 500 1.385 1.84 8.0
    TATB[16] 31.8 30 140.8 2.005[17] 1.80 12.702[18]
    Explosive Chemical heat Q/(106m2·s-2) Thermal conductivity λ/(10-10m·s-1·K-1) Viscosity coefficient γ/s-1 Outer radius of pore ro/cm Inner radius of pore ri/cm
    HMX 5.439 8.0 300[12] 0.01 0.003 24
    TATB 2.51 8.0 300[12] 0.01 0.003 24
    下载: 导出CSV

    表  3  冲击脉冲压力、温升临界时间及对应起爆阈值计算结果

    Table  3.   Calculated result of impulse pressure, temperature rising time and corresponding initiation threshold

    Pressure/GPa Time/ns Initiation threshold/(GPa2·ns)
    25
    20 11 4 400
    15 65 14 625
    10 215 21 500
    9 277 22 437
    8 362 23 168
    7 485 23 765
    6 671 24156
    5 974 24 350
    4 1522 24336
    3 2 674 24066
    2 5 877 23 508
    1 22 869 22 869
    0.60 64 980 23 392
    0.55 78 355 23 702
    0.50 96 911 24277
    0. 45 124 914 25 295
    0.44 132 530 25 657
    0.43 141293 26 125
    0.42 151635 26 748
    0.40 181031 28 964
    0.38
    下载: 导出CSV
  • [1] 孙锦山, 朱建士.理论爆轰物理[M].北京:国防工业出版社, 1995:332-334.

    SUN J S, ZHU J S.Theoretical detonation physics[M].Beijing:National Defense Industry Press, 1995:332-334.
    [2] RIDEAL E K, ROBERTSON A J B.The sensitiveness of solid high explosives to impact[J].Proceedings of the Royal Society A, 1948, 195(1041):135-150. doi: 10.1098/rspa.1948.0108
    [3] BODDINGTON T.The growth and decay of hot spots and the relation between structure and stability[J].Symposium on Combustion, 1963, 9(1):287-293. doi: 10.1016/S0082-0784(63)80036-3
    [4] THOMAS P H.An approximate theory of "hot spot" critically[J].Combustion and Flame, 1973, 21(1):99-109. doi: 10.1016/0010-2180(73)90011-4
    [5] WALKER F E, WASLEY R J.Critical energy for shock initiation of heterogeneous explosives[J].Explosive Stoffe, 1969, 17(1):9-13. http://www.worldcat.org/title/critical-energy-for-shock-initiation-of-heterogeneous-explosives/oclc/829388221
    [6] 章冠人.瞬时加热热点的近似临界理论[J].爆炸与冲击, 1982, 2(3):53-60. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bzcj201701008&dbname=CJFD&dbcode=CJFQ

    ZHANG G R.An approximate theory of criticality of "hot spot" of instantaneous addition of heat[J].Explosion and Shock Waves, 1982, 2(3):53-60. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bzcj201701008&dbname=CJFD&dbcode=CJFQ
    [7] 章冠人.粘弹塑性热点燃烧模型的冲击起爆理论[J].爆炸与冲击, 1988, 8(3):20-24. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bzcj198803002&dbname=CJFD&dbcode=CJFQ

    ZHANG G R.Theory of initiation of hot spot in heterogeneous explosive with visco-elastic-plastic and combustion model[J].Explosion and Shock Waves, 1988, 8(3):20-24. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bzcj198803002&dbname=CJFD&dbcode=CJFQ
    [8] 胡双启, 谭迎新, 张景林.凝聚炸药的冲击起爆[J].中国安全科学学报, 1995, 5(4):57-61. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zaqk504.013&dbname=CJFD&dbcode=CJFQ

    HU S Q, TAN Y X, ZHANG J L.Shock initiation of heterogeneous explosive[J].China Safety Science Journal, 1995, 5(4):57-61. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zaqk504.013&dbname=CJFD&dbcode=CJFQ
    [9] PETER J H, MALCOLM D C. A modified criterion for the prediction of shock initiation thresholds for flyer plate and rod impacts[C]//14th International Detonation Symposium. Coeur d'Alene, ID, 2010: 199-207. https://www.researchgate.net/publication/286659234_A_modified_{\rm{c}}riterion_for_the_prediction_{\rm{o}}f_shock_{\rm{i}}nitiation_thresholds_for_flyer_plate_and_rod_{\rm{i}}mpacts
    [10] LOBOIKO B G, LUBYATINSKY S N.Reaction zones of detonating solid explosives[J].Combustion Explosion & Shock Waves, 2000, 36(6):716-733. doi: 10.1023/A:1002898505288
    [11] CARROLL M M, HOLT A C.Static and dynamic pore-collapse relations for ductile porous materials[J].Journal of Applied Physics, 1972, 43(4):1626-1636. doi: 10.1063/1.1661372
    [12] KIM K, SOHN C H. Modeling of reaction buildup processes in shock porous explosive[C]//8th International Symposium on Detonation. Albuquerque, NM, 1985: 926-933.
    [13] LEE E L, TARVER C M.Phenomenological model of shock of shock initiation in heterogeneous explosives[J].Physics of Fluids, 1980, 23(12):2362-2372. doi: 10.1063/1.862940
    [14] GARCIA M L, TARVER C M. Three-dimensional ignition and growth reactive flow modeling of prism failure tests on PBX 9502[C]//13th International Detonation Symposium. Norfolk, VA, 2006: 164-169. https://digital.library.unt.edu/ark:/67531/metadc888313/
    [15] 章冠人, 陈大年, 凝聚炸药起爆动力学[M].北京:国防工业出版社, 1991:129-130.

    ZHANG G R, CHEN D N.Condensed explosive initiation dynamics[M].Beijing:National Defense Industry Press, 1991:129-130.
    [16] 张震宇, 田占东, 陈军, 等.爆轰物理[M].长沙:国防工业出版社, 2016:206-207.

    ZHANG Z Y, TIAN Z D, CHEN J, et al.Detonation physics[M].Changsha:National Defense Industry Press, 2016:206-207.
    [17] LIU Y R, DUAN Z P, ZHANG Z Y, et al.A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives[J].Journal of Hazardous Materials, 2016, 317:44-51. doi: 10.1016/j.jhazmat.2016.05.052
    [18] HOFFMAN D M.Mechanical mocks for insensitive high explosives[J].Journal of Energetic Materials, 2003, 21(4):201-222. doi: 10.1080/713770433
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  7426
  • HTML全文浏览量:  3419
  • PDF下载量:  447
出版历程
  • 收稿日期:  2017-10-10
  • 修回日期:  2017-11-02

目录

    /

    返回文章
    返回