Mechanical Behaviors of Closed-Cell Aluminum Foams under Quasi-Static Compression-Shear Loads
-
摘要: 通过添加斜端面垫块和长方体套筒,利用材料试验机对闭孔泡沫铝进行准静态下的压剪复合加载实验。改变斜端面垫块的角度,得到泡沫铝在不同压剪加载路径下的力学性能。对试样进行受力分析,得到泡沫铝在压剪空间的屈服面。同时采用有限元软件LS-DYNA对闭孔泡沫铝的压剪加载过程进行数值模拟,仿真屈服面与实验屈服面吻合较好。仿真研究表明,密度相同的泡沫铝,在一定孔径范围内,胞孔尺寸越大,屈服应力越大,泡沫铝的承载能力越好。Abstract: In the present work, we conducted the quasi-static compression-shear experiments on the closed-cell aluminum foams using an improved testing machine and installing beveled bars and a column sleeve.By changing the angle of the inclined beveled bars we obtained the mechanical properties of the aluminum foams in different compression-shear loading paths, and then figured out the aluminum foam's experiment yield surface from the force analysis of the specimen used.At the same time, we simulated the compression-shear process of the closed-cell aluminum foams using the finite element software LS-DYNA.The simulated yield surface is in good agreement with the experimental yield surface.The results show that, for the aluminum foams of the same density and in a given range of the cell size, the yield strength of the closed-cell aluminum foams increases with the increase of the cell size, and so does its load capacity.
-
表 1 试件尺寸和加载条件
Table 1. Specimen size and loading conditions
Diameter/mm Height/mm Density/(g·cm-3) Loading angle/(°) Loading speed/(mm·min-1) 32.50 9.88 0.49 10 1 31.92 10.24 0.49 20 1 32.50 10.00 0.49 30 1 31.94 10.06 0.49 40 1 32.00 10.22 0.49 50 1 32.00 10.08 0.49 60 1 表 2 各单元材料和材料模型
Table 2. Material and material models for elements
Part name Material Density/(g·cm-3) Material model Upper beveled bar 45 steel 7.83 Rigid Lower beveled bar 45 steel 7.83 Rigid Shell element matrix Aluminum alloy 2.70 PLASTIC_KINEMATIC -
[1] 刘培生, 李铁藩, 傅超.多孔金属材料的应用[J].功能材料, 2001, 32(1):12-15. http://www.cqvip.com/QK/72003x/201607/epub1000000248429.htmlLIU P S, LI T F, FU C.Application of porous metal materials[J].Functional Materials, 2001, 32(1):12-15. http://www.cqvip.com/QK/72003x/201607/epub1000000248429.html [2] 胡时胜, 王悟, 潘艺, 等.泡沫材料的应变率效应[J].爆炸与冲击, 2003, 23(1):13-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj200301003HU S S, WANG W, PAN Y, et al.Strain rate effect on the properties foam materials[J].Explosion and Shock Waves, 2003, 23(1):13-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bzycj200301003 [3] 潘艺, 胡时胜, 魏志刚.泡沫铝动态力学性能的实验研究[J].材料科学与工程, 2002, 20(3):341-343. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=clkxygc200203008PAN Y, HU S S, WEI Z G.Experimental study on dynamic behavior of foamed aluminum[J].Materials Science and Engineering, 2002, 20(3):341-343. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=clkxygc200203008 [4] 郑明军, 何德坪, 陈锋.多孔铝合金的压缩应力-应变特征及能量吸收性能[J].中国有色金属学报, 2001, 11(专辑2):81-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgysjsxb2001z2018ZHENG M J, HE D P, CHEN F.Compressive stress-strain behavior and energy absorption capability of porous aluminum alloy[J].The Chinese Journal of Nonferrous Metals, 2001, 11(S2):81-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgysjsxb2001z2018 [5] GIOUX G, MCCORMACK T M, GIBSON L J.Failure of aluminum foams under multiaxial loads[J].International Journal of Mechanical Sciences, 2000, 42(6):1097-1117. doi: 10.1016/S0020-7403(99)00043-0 [6] DESHPANDE V S, FLECK N A.Isotropic constitutive models for metallic foams[J].Journal of the Mechanics and Physics of Solids, 2000, 48(6/7):1253-1283. http://www.sciencedirect.com/science/article/pii/S0022509699000824 [7] RUAN D, LU G, ONG L S, et al.Triaxial compression of aluminium foams[J].Composites Science and Technology, 2007, 67(6):1218-1234. doi: 10.1016/j.compscitech.2006.05.005 [8] 崔云霄, 卢芳云, 林玉亮, 等.一种新的高应变率复合压剪技术[J].实验力学, 2006, 21(5):584-590. http://d.wanfangdata.com.cn/Periodical_sylx200605007.aspxCUI Y X, LU F Y, LIN Y L, et al.A new combined compression-shear loading technique at high strain rates[J].Journal of Experimental Mechanics, 2006, 21(5):584-590. http://d.wanfangdata.com.cn/Periodical_sylx200605007.aspx [9] 郑文, 徐松林, 蔡超, 等.基于Hopkinson压杆的动态压剪复合加载实验研究[J].力学学报, 2012, 44(1):124-131. http://www.cnki.com.cn/Article/CJFDTotal-LXXB201201019.htmZHENG W, XU S L, CAI C, et al.A Study of dynamic combined compression-shear loading technique based on Hopkinson pressure bar[J].Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(1):124-131. http://www.cnki.com.cn/Article/CJFDTotal-LXXB201201019.htm [10] GIBSON L J, ASHBY M F, ZHANG J, et al.Failure surfaces of cellular materials under multiaxial loads-I.Modeling[J].International Journal of Mechanical Sciences, 1989, 31(9):635-663. doi: 10.1016/S0020-7403(89)80001-3 [11] MILLER R E.A continuum plasticity model for the constitutive and indentation behavior of foamed metals[J].International Journal of Mechanical Sciences, 2000, 42(4):729-754. doi: 10.1016/S0020-7403(99)00021-1 [12] NIEH T G, et al.Effect of cell morphology on the compressive properties of open-cell aluminum foams[J].Material Science and Engineering A, 2002, 283(1/2):105-110. https://www.sciencedirect.com/science/article/pii/S0921509300006237 [13] ONCK P R, ANDREWS E W, GIBSON L J.Size effects in ductile cellular solids (Part Ⅰ):modeling[J].International Journal of Mechanical Sciences, 2001, 43(3):681-699. doi: 10.1016/S0020-7403(00)00042-4 [14] 卢子兴, 张家雷.低密度闭孔金属泡沫压缩屈服行为的数值模拟[J].北京航空航天大学学报, 2009, 35(3):318-321. http://www.cqvip.com/QK/90750X/200903/30057865.htmlLU Z X, ZHANG J L.Numerical simulation on compressive yielding behavior of closed-cell metal foam with low density[J].Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(3):318-321. http://www.cqvip.com/QK/90750X/200903/30057865.html [15] 时学鹏. 考虑几何不规则度的泡沫金属建模及其本构关系研究[D]. 广州: 华南理工大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10561-1014063647.htmSHI X P.Study on modeling and constitutive relation considering the geometric irregularity[D].Guangzhou:South China University of Technology, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10561-1014063647.htm