月幔条件下水在橄榄石中扩散的实验研究

谢梦雨 鹿亚飞 邹心宇 邓力维

谢梦雨, 鹿亚飞, 邹心宇, 邓力维. 月幔条件下水在橄榄石中扩散的实验研究[J]. 高压物理学报, 2018, 32(1): 011201. doi: 10.11858/gywlxb.20170645
引用本文: 谢梦雨, 鹿亚飞, 邹心宇, 邓力维. 月幔条件下水在橄榄石中扩散的实验研究[J]. 高压物理学报, 2018, 32(1): 011201. doi: 10.11858/gywlxb.20170645
XIE Mengyu, LU Yafei, ZOU Xinyu, DENG Liwei. Water Diffusion in Olivine under Lunar Mantle Conditions[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 011201. doi: 10.11858/gywlxb.20170645
Citation: XIE Mengyu, LU Yafei, ZOU Xinyu, DENG Liwei. Water Diffusion in Olivine under Lunar Mantle Conditions[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 011201. doi: 10.11858/gywlxb.20170645

月幔条件下水在橄榄石中扩散的实验研究

doi: 10.11858/gywlxb.20170645
基金项目: 

国家自然科学基金 41374096

国家自然科学基金 41490632

中国科学院战略性先导科技专项(B类) XDB18000000

中国科学院重点部署项目(Key Research Program of the Chinese Academy of Sciences) QYZDJ-SSW-DQC001

详细信息
    作者简介:

    谢梦雨(1991-), 女, 硕士, 主要从事活塞圆筒压机、高压矿物物理研究. E-mail: xiemengyu@mail.iggcas.ac.cn

    通讯作者:

    邓力维(1981—), 女, 博士, 副研究员, 主要从事高压科学与技术、地球深部矿物物性研究. E-mail: dengliwei@mail.iggcas.ac.cn

  • 中图分类号: O521.2

Water Diffusion in Olivine under Lunar Mantle Conditions

  • 摘要: 利用高温高压实验技术,对月幔条件下水在橄榄石中的扩散行为开展实验模拟研究,考察氧逸度、压力和温度对水沿橄榄石晶体不同晶轴扩散速率的影响。实验结果表明:在高氧逸度条件下水在橄榄石中的扩散速率比低氧逸度条件下更高;扩散速率与温度正相关,与压力负相关;水沿橄榄石[100]轴的扩散速率较高,沿[001]轴的扩散速率较低,且随着压力的升高,扩散的各向异性减弱。月幔条件下,即使未完全饱和时橄榄石中的羟基含量仍超过10-4,因此橄榄石可成为月球深部水的重要储库。通过对比岩浆上升及喷发速率与水在橄榄石熔体包裹体中的扩散速率可知,熔体包裹体在岩浆上升过程中不会出现水的丢失,而在岩浆喷发过程中极有可能由于扩散作用而丢失大量的水。因此,前人根据橄榄石熔体包裹体所推测的月幔水含量有可能仅是下限值。研究工作为准确推演月球演化历史提供基础科学依据。

     

  • 图  退火后橄榄石的穆斯堡尔谱(293 K)

    Figure  1.  Mössbauer spectrum of olivine recovered from annealing experiment (293 K)

    图  实验组装示意

    Figure  2.  Schematic illustration of experimental assembly

    图  橄榄石[100]轴边缘处非偏振红外光谱(所有光谱都进行了归一化处理)

    Figure  3.  Unpolarized IR spectra of olivines (at the rim) along [100] axis (All the spectra are normalized to 1 cm of thickness)

    图  Ol-5-3橄榄石晶体中平行[100]轴的非偏振红外光谱(900 ℃、1.5 GPa、5 h、NNO;主要的羟基峰位于3 610、3 599、3 572、3 568、3 502、3 444、3 417、3 356和3 329 cm-1;所有光谱都进行了归一化处理)

    Figure  4.  Unpolarized infrared spectra as a function of wavenumber and position along the [100] axis in sample Ol-5-3 (900 ℃, 1.5 GPa, 5 h, NNO.The major hydroxyl absorption bands are located at 3 610, 3 599, 3 572, 3 568, 3 502, 3 444, 3 417, 3 356 and 3 329 cm-1.All the spectra are normalized to 1 cm of thickness.)

    图  Ol-7-1橄榄石晶体(2.5 GPa、900 ℃、NNO、样品尺寸2.44 mm×0.36 mm×2.09 mm)中水沿[100]和[001]轴的扩散剖面(相应的化学扩散速率标记在图中,黑色圆点为实验数据,实线为根据扩散定律拟合的扩散剖面)

    Figure  5.  Hydroxyl content as a function of position parallel to [100] and [001] crystallographic axes in sample Ol-7-1 (2.5 GPa, 900 ℃, 5 h, buffered by NNO, size 2.44 mm×0.36 mm×2.09 mm.Diffusion coefficients are shown in each plot.Black points are IR data, and the solid lines are fitted diffusion profiles.)

    图  水沿橄榄石[100]和[001]轴的扩散速率与压力的关系

    Figure  6.  Diffusion coefficients along [100] and [001] axes as a function of pressure in olivines

    图  水沿橄榄石[100]、[010]、[001]轴的扩散速率与温度的关系

    Figure  7.  Diffusion coefficients along [100], [010] and [001] axes as a function of temperature in olivines

    表  1  水在橄榄石中扩散的实验条件及样品尺寸

    Table  1.   Experimental conditions of water diffusion in olivine and crystal sizes of samples

    Sample Pressure/GPa Temperature/℃ Duration/h Buffer Capsule Size before hydration[100]×[010]×[001]/(mm×mm×mm) Size for FTIR measurement[100]×[010]×[001]/(mm×mm×mm)
    Ol-5-3 1.5 900 5 NNO Ni 2.90×1.80×1.64 2.90×0.30*×1.64
    Ol-7-1 2.5 900 5 NNO Ni 2.44×2.10×2.09 2.44×0.36*×2.09
    Ol-7-2 3.0 900 5 NNO Ni 1.86×2.08×2.41 1.86×0.21*×2.41
    No.1-2 2.5 900 5 IW Fe 2.42×2.47×1.65 2.42×0.22*×1.65
    No.2-3 2.5 1 050 2/3 IW Fe 1.87×2.08×2.44 1.87×0.16*×2.44
    No.1-3 2.5 1 200 1/3 IW Fe 2.31×2.33×1.75 2.31×0.33*×1.75
    Note: The asterisk symbols represent sample thickness; NNO and IW stand for nickel-nickel oxide and iron-wüstite, respectively.
    下载: 导出CSV

    表  2  水沿橄榄石各晶轴的扩散速率

    Table  2.   Diffusion coefficients of water along each axis in olivines

    Sample Pressure/GPa Temperature/℃ lg fO2 Duration/h C0/10-5 D[100]/(10-12 m2·s-1) D[001]/(10-12 m2·s-1)
    Ol-5-3 1.5 900 -12.0 5 2.7 2.15 0.35
    Ol-7-1 2.5 900 -12.0 5 6.0 2.35 0.26
    Ol-7-2 3.0 900 -12.0 5 7.1 0.70 0.40
    No.1-2 2.5 900 -16.7 5 10.3 0.31 0.16
    No.2-3 2.5 1 050 -14.1 2/3 13.1 ND 3.50
    No.1-3 2.5 1 200 -11.9 1/3 12.5 8.50 6.75
    Note: (1) lg fO2 was calculated using O'Neill's equation[23] for NNO and O'Neill and Pownceby's equation[24] for IW;
    (2) ND means "not detected", and D[010] in all samples were not detected.
    下载: 导出CSV

    表  3  回收橄榄石样品中的红外羟基波数和羟基结合机制

    Table  3.   Hydroxyl band positions in all recovered olivines and hydroxyl incorporation mechanisms

    Hydroxyl band positions/cm-1 Band assignments
    Ol-5-3 Ol-7-1 Ol-7-2 No.1-2 No.2-3 No.1-3
    3 182 M site
    3 197 3 224 M site
    3 232 M site
    3 263 3 263
    3 329 3 329 3 321 Me3+ site
    3 356 3 356 3 352 3 352 3 356 3 344 Me3+ site
    3402 3 398 3 390 3 394 Ti4+
    3 417 3 421 3 425 3 410 3 410
    3 433
    3 448 3 456 3 452 3 452 3 444 Si site
    3 487 3 483 3 475 3 479 3 475
    3 502 3 494 3 506
    3 510 3 514
    3 525 3 521 Ti4+
    3 545
    3 568 3 568 3 556 3 568 3 560 Si site
    3 572 3 575 Ti4+
    3 591
    3 599 3 599 3 602
    3 610 Si site
    3 629
    下载: 导出CSV
  • [1] CANUP R M.Dynamics of lunar formation[J].Annual Review of Astronomy & Astrophysics, 2004, 42(1):441-475. doi: 10.1146/annurev.astro.41.082201.113457?src=recsys
    [2] TAYLOR S R, PIETERS C M, MACPHERSON G J.Earth-moon system, planetary science, and lessons learned[J].Reviews in Mineralogy and Geochemistry, 2006, 60(1):657-704. doi: 10.2138/rmg.2006.60.7
    [3] SHEARER C K, HESS P C, WIECZOREK M A, et al.Thermal and magmatic evolution of the Moon[J].Reviews in Mineralogy and Geochemistry, 2006, 60(1):365-518. doi: 10.2138/rmg.2006.60.4
    [4] SAAL A E, HAURI E H, CASCIO M L, et al.Volatile content of lunar volcanic glasses and the presence of water in the Moon's interior[J].Nature, 2008, 454(7201):192-195. doi: 10.1038/nature07047
    [5] BOYCE J W, LIU Y, ROSSMAN G R, et al.Lunar apatite with terrestrial volatile abundances[J].Nature, 2010, 466(7305):466-469. doi: 10.1038/nature09274
    [6] MCCUBBIN F M, STEELE A, HAURI E H, et al.Nominally hydrous magmatism on the Moon[J].Proceedings of the National Academy of Sciences, 2010, 107(25):11223-11228. doi: 10.1073/pnas.1006677107
    [7] GREENWOOD J P, ITOH S, SAKAMOTO N, et al.Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon[J].Nature Geoscience, 2011, 4(2):79-82. doi: 10.1038/ngeo1050
    [8] HAURI E H, WEINREICH T, SAAL A E, et al.High pre-eruptive water contents preserved in lunar melt inclusions[J].Science, 2011, 333(6039):213-215. doi: 10.1126/science.1204626
    [9] BARNES J J, FRANCHI I A, ANAND M, et al.Accurate and precise measurements of the D/H ratio and hydroxyl content in lunar apatites using NanoSIMS[J].Chemical Geology, 2013, 337:48-55. https://www.sciencedirect.com/science/article/pii/S000925411200589X
    [10] TARTÈSE R, ANAND M, BARNES J J, et al.The abundance, distribution, and isotopic composition of hydrogen in the Moon as revealed by basaltic lunar samples:implications for the volatile inventory of the Moon[J].Geochimica et Cosmochimica Acta, 2013, 122:58-74. doi: 10.1016/j.gca.2013.08.014
    [11] TARTÈSE R, ANAND M.Late delivery of chondritic hydrogen into the lunar mantle:insights from mare basalts[J].Earth and Planetary Science Letters, 2013, 361:480-486. doi: 10.1016/j.epsl.2012.11.015
    [12] BARNES J J, TARTÈSE R, ANAND M, et al.The origin of water in the primitive Moon as revealed by the lunar highlands samples[J].Earth and Planetary Science Letters, 2014, 390:244-252. doi: 10.1016/j.epsl.2014.01.015
    [13] CHEN Y, ZHANG Y X, LIU Y, et al.Water, fluorine, and sulfur concentrations in the lunar mantle[J].Earth and Planetary Science Letters, 2015, 427:37-46. doi: 10.1016/j.epsl.2015.06.046
    [14] GOSWAMI J N.Water in the lunar interior[J].Current Science, 2016, 110(8):1536-1539. http://adsabs.harvard.edu/abs/2014AGUFM.V31A4713H
    [15] 李霓, 吴树青.熔融包裹体及其挥发分研究概况及分析方法简析[J].地球与环境, 2004, 32(3):14-20. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200002001.htm

    LI N, WU S Q.Progress in the study of melt inclusions & their volatiles and analysis methods [J].Earth and Environment, 2004, 32(3):14-20. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200002001.htm
    [16] PORTNYAGIN M, ALMEEV R, MATVEEV S, et al.Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma[J].Earth and Planetary Science Letters, 2008, 272(3):541-552. https://www.sciencedirect.com/science/article/pii/S0012821X08003476
    [17] JOHNSON E R, WALLACE P J, CASHMAN K V, et al.Magmatic volatile contents and degassing-induced crystallization at Volcán Jorullo, Mexico:implications for melt evolution and the plumbing systems of monogenetic volcanoes[J].Earth and Planetary Science Letters, 2008, 269(3):478-487. https://www.sciencedirect.com/science/article/pii/S0012821X08001593
    [18] HU S, LIN Y, ZHANG J, et al.NanoSIMS analyses of apatite and melt inclusions in the GRV 020090 Martian meteorite:hydrogen isotope evidence for recent past underground hydrothermal activity on Mars[J].Geochimica et Cosmochimica Acta, 2014, 140:321-333. doi: 10.1016/j.gca.2014.05.008
    [19] GAETANI G A, GROVE T L.The influence of water on melting of mantle peridotite[J].Contributions to Mineralogy and Petrology, 1998, 131(4):323-346. doi: 10.1007/s004100050396
    [20] YOSHINO T, MATSUZAKI T, SHATSKIY A, et al.The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle[J].Earth and Planetary Science Letters, 2009, 288(1):291-300. https://www.sciencedirect.com/science/article/pii/S0012821X09005664
    [21] REGENAUER-LIEB, KOHL T.Water solubility and diffusivity in olivine:its role in planetary tectonics[J].Mineralogical Magazine, 2003, 67(4):697-715. doi: 10.1180/0026461036740128
    [22] DEMOUCHY S, MACKWELL S.Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine[J].Physics and Chemistry of Minerals, 2006, 33(5):347-355. doi: 10.1007/s00269-006-0081-2
    [23] O'NEILL H S C.Free energies of formation of NiO, CoO, Ni2SiO4 and Co2SiO4[J].American Mineralogist, 1987, 72:280-291. doi: 10.1007/BF00310701
    [24] O'NEILL H S C, POWNCEBY M I.Thermodynamic data from redox reactions at high temperatures.Ⅱ.the MnO-Mn3O4 oxygen buffer, and implications for the thermodynamic properties of MnO and Mn3O4[J].Contributions to Mineralogy and Petrology, 1993, 114(3):315-320. doi: 10.1007/BF01046534
    [25] BROMILEY G D, KEPPLER H.An experimental investigation of hydroxyl solubility in jadeite and Na-rich clinopyroxenes[J].Contributions to Mineralogy and Petrology, 2004, 147(2):189-200. doi: 10.1007/s00410-003-0551-1
    [26] MACKWELL S J, KOHLSTEDT D L.Diffusion of hydrogen in olivine:implications for water in the mantle[J].Journal of Geophysical Research:Solid Earth, 1990, 95(B4):5079-5088. doi: 10.1029/JB095iB04p05079
    [27] PATERSON M S.The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials[J].Bull Mineral, 1982, 105:20-29. http://ci.nii.ac.jp/naid/80001179570/
    [28] KOHLSTEDT D L, MACKWELL S J.Diffusion of hydrogen and intrinsic point defects in olivine[J].Zeitschrift für Physikalische Chemie, 1998, 207(1/2):147-162. https://experts.umn.edu/en/publications/diffusion-of-hydrogen-and-intrinsic-point-defects-in-olivine
    [29] 张培培, 刘佳.橄榄石中H的结合机制及扩散行为[J].岩石矿物学杂志, 2013, 32(5):708-732. http://www.cqvip.com/QK/94932X/201305/47454445.html

    ZHANG P P, LIU J.The incorporation mechanisms and diffusion kinetics of hydrogen in olivine[J].Acta Petrologica et Mineralogica, 2013, 32(5):708-732. http://www.cqvip.com/QK/94932X/201305/47454445.html
    [30] MATVEEV S, O'NEILL H S C, BALLHAUS C, et al.Effect of silica activity on OH- IR spectra of olivine:implications for low-aSiO2 mantle metasomatism[J].Journal of Petrology, 2001, 42(4):721-729. doi: 10.1093/petrology/42.4.721
    [31] BAI Q, KOHLSTEDT D L.Effects of chemical environment on the solubility and incorporation mechanism for hydrogen in olivine[J].Physics and Chemistry of Minerals, 1993, 19(7):460-471. doi: 10.1007/BF00203186
    [32] LEMAIRE C, KOHN S C, BROOKER R A.The effect of silica activity on the incorporation mechanisms of water in synthetic forsterite:a polarised infrared spectroscopic study[J].Contributions to Mineralogy and Petrology, 2004, 147(1):48-57. doi: 10.1007/s00410-003-0539-x
    [33] ZHAO Y H, GINSBERG S B, KOHLSTEDT D L.Solubility of hydrogen in olivine:dependence on temperature and iron content[J].Contributions to Mineralogy and Petrology, 2004, 147(2):155-161. doi: 10.1007/s00410-003-0524-4
    [34] BERRY A J, HERMANN J, O'NEILL H S C, et al.Fingerprinting the water site in mantle olivine[J].Geology, 2005, 33(11):869-872. doi: 10.1130/G21759.1
    [35] MATVEEV S, PORTNYAGIN M, BALLHAUS C, et al.FTIR spectrum of phenocryst olivine as an indicator of silica saturation in magmas[J].Journal of Petrology, 2004, 46(3):603-614. doi: 10.1093/petrology/egh090
    [36] DEMOUCHY S, JACOBSEN S D, GAILLARD F, et al.Rapid magma ascent recorded by water diffusion profiles in mantle olivine[J].Geology, 2006, 34(6):429-432. doi: 10.1130/G22386.1
    [37] GRANT K J, KOHN S C, BROOKER R A.Solubility and partitioning of water in synthetic forsterite and enstatite in the system MgO-SiO2-H2O±Al2O3[J].Contributions to Mineralogy and Petrology, 2006, 151(6):651-664. doi: 10.1007/s00410-006-0082-7
    [38] GRANT K J, BROOKER R A, KOHN S C, et al.The effect of oxygen fugacity on hydroxyl concentrations and speciation in olivine:implications for water solubility in the upper mantle[J].Earth and Planetary Science Letters, 2007, 261(1):217-229. https://www.sciencedirect.com/science/article/pii/S0012821X07004189
    [39] WALKER A M, HERMANN J, BERRY A J, et al.Three water sites in upper mantle olivine and the role of titanium in the water weakening mechanism[J].Journal of Geophysical Research:Solid Earth, 2007, 112(B5):B004620. https://openresearch-repository.anu.edu.au/handle/1885/33680
    [40] KOVÁCS I, O'NEILL H S C, HERMANN J, et al.Site-specific infrared OH absorption coefficients for water substitution into olivine[J].American Mineralogist, 2010, 95(2/3):292-299. http://adsabs.harvard.edu/abs/2010AmMin..95..292K
    [41] INGRIN J, LIU J, DEPECKER C, et al.Low-temperature evolution of OH bands in synthetic forsterite, implication for the nature of H defects at high pressure[J].Physics and Chemistry of Minerals, 2013, 40(6):499-510. doi: 10.1007/s00269-013-0587-3
    [42] DEMOUCHY S, THORAVAL C, BOLFAN-CASANOVA N, et al.Diffusivity of hydrogen in iron-bearing olivine at 3 GPa[J].Physics of the Earth and Planetary Interiors, 2016, 260:1-13. doi: 10.1016/j.pepi.2016.08.005
    [43] DEMOUCHY S, MACKWELL S.Water diffusion in synthetic iron-free forsterite[J].Physics and Chemistry of Minerals, 2003, 30(8):486-494. doi: 10.1007/s00269-003-0342-2
    [44] SMITH D E, ZUBER M T, NEUMANN G A, et al.Topography of the Moon from the Clementine lidar[J].Journal of Geophysical Research:Planets, 1997, 102(E1):1591-1611. doi: 10.1029/96JE02940
    [45] WIECZOREK M A, JOLLIFF B L, KHAN A, et al.The constitution and structure of the lunar interior[J].Reviews in Mineralogy and Geochemistry, 2006, 60(1):221-364. doi: 10.2138/rmg.2006.60.3
    [46] WEBER R C, LIN P Y, GARNERO E J, et al.Seismic detection of the lunar core[J].Science, 2011, 331(6015):309-312. doi: 10.1126/science.1199375
    [47] HESS P C, PARMENTIER E M.A model for the thermal and chemical evolution of the Moon's interior:implications for the onset of mare volcanism[J].Earth and Planetary Science Letters, 1995, 134(3/4):501-514. http://www.sciencedirect.com/science/article/pii/0012821X95001383
    [48] ZIETHE R, SEIFERLIN K, HIESINGER H.Duration and extent of lunar volcanism:comparison of 3D convection models to mare basalt ages[J].Planetary and Space Science, 2009, 57(7):784-796. doi: 10.1016/j.pss.2009.02.002
    [49] TAYLOR S R, JAKES P. The geochemical evolution of the Moon[C]//Lunar and Planetary Science Conference Proceedings, 1974, 5: 1287-1305.
    [50] SNYDER G A, TAYLOR L A, NEAL C R.A chemical model for generating the sources of mare basalts:combined equilibrium and fractional crystallization of the lunar magmasphere[J].Geochimica et Cosmochimica Acta, 1992, 56(10):3809-3823. doi: 10.1016/0016-7037(92)90172-F
    [51] LONGHI J.A new view of lunar ferroan anorthosites:postmagma ocean petrogenesis[J].Journal of Geophysical Research:Planets, 2003, 108(E8):5083. doi: 10.1029/2002JE001941
    [52] ELARDO S M, DRAPER D S, SHEARER C K.Lunar Magma Ocean crystallization revisited:bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite[J].Geochimica et Cosmochimica Acta, 2011, 75(11):3024-3045. doi: 10.1016/j.gca.2011.02.033
    [53] YAMAMOTO S, NAKAMURA R, MATSUNAGA T, et al.Possible mantle origin of olivine around lunar impact basins detected by SELENE[J].Nature Geoscience, 2010, 3(8):533-536. doi: 10.1038/ngeo897
    [54] LIN Y H, TRONCHE E J, STEENSTRA E S, et al.Evidence for an early wet Moon from experimental crystallization of the lunar magma ocean[J].Nature Geoscience, 2016, 10(1):14-18. http://www.nature.com/ngeo/journal/v10/n1/ngeo2845/metrics
    [55] LIN Y, TRONCHE E J, STEENSTRA E S, et al.Experimental constraints on the solidification of a nominally dry lunar magma ocean[J].Earth and Planetary Science Letters, 2017, 471:104-116. doi: 10.1016/j.epsl.2017.04.045
    [56] WADHWA M.Redox conditions on small bodies, the Moon and Mars[J].Reviews in Mineralogy and Geochemistry, 2008, 68(1):493-510. doi: 10.2138/rmg.2008.68.17
    [57] 蒙伟娟, 陈祖安, 白武明.地幔柱与岩石圈相互作用过程的数值模拟[J].地球物理学报, 2015, 58(2):495-503. doi: 10.6038/cjg20150213

    MENG W J, CHEN Z A, BAI W M.Numerical simulation on process of the plume-lithosphere interaction[J].Chinese Journal of Geophysics, 2015, 58(2):495-503. doi: 10.6038/cjg20150213
    [58] WIECZOREK M A.The interior structure of the moon:what does geophysics have to say?[J].Elements, 2009, 5(1):35-40. doi: 10.2113/gselements.5.1.35
    [59] SPERA F J.Aspects of magma transport[M].New Jersey:Princeton University Press, 1980:265-323.
    [60] SELVERSTONE J, STERN C R.Petrochemistry and recrystallization history of granulite xenoliths from the Pali-Aike volcanic field, Chile[J].American Mineralogist, 1983, 68(11/12):1102-1112.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  9337
  • HTML全文浏览量:  3196
  • PDF下载量:  156
出版历程
  • 收稿日期:  2017-09-21
  • 修回日期:  2017-09-30

目录

    /

    返回文章
    返回