Water Diffusion in Olivine under Lunar Mantle Conditions
-
摘要: 利用高温高压实验技术,对月幔条件下水在橄榄石中的扩散行为开展实验模拟研究,考察氧逸度、压力和温度对水沿橄榄石晶体不同晶轴扩散速率的影响。实验结果表明:在高氧逸度条件下水在橄榄石中的扩散速率比低氧逸度条件下更高;扩散速率与温度正相关,与压力负相关;水沿橄榄石[100]轴的扩散速率较高,沿[001]轴的扩散速率较低,且随着压力的升高,扩散的各向异性减弱。月幔条件下,即使未完全饱和时橄榄石中的羟基含量仍超过10-4,因此橄榄石可成为月球深部水的重要储库。通过对比岩浆上升及喷发速率与水在橄榄石熔体包裹体中的扩散速率可知,熔体包裹体在岩浆上升过程中不会出现水的丢失,而在岩浆喷发过程中极有可能由于扩散作用而丢失大量的水。因此,前人根据橄榄石熔体包裹体所推测的月幔水含量有可能仅是下限值。研究工作为准确推演月球演化历史提供基础科学依据。Abstract: High-pressure water diffusion experiments in olivine crystal were conducted in a piston-cylinder press in the present work to investigate systematically the diffusion coefficients of water in view of changes of pressure, temperature and oxygen fugacity.It was found that diffusion coefficients increase with elevated temperatures and decreased pressures, and become relatively larger at high oxygen fugacity.The rate of the diffusion along [100] axis is faster than that along [001] axis and the anisotropy becomes weaker with the increase of the pressure.The measured hydroxyl concentrations in the olivine under lunar mantle conditions are higher than 10-4, thus indicating that the olivine could be a major water reservoir in the deep lunar mantle.By comparing the diffusion rate of the water in the olivine melt inclusions with the magma ascent and the eruption rates, we found that the water in the melt inclusions in the olivine xenocrysts will be well maintained during the magma ascent, whereas water will diffuse out of the xenocrysts during the magma eruption process.The estimated water concentration in the lunar mantle based on the melt inclusion data could be the lower limit.Our work provides significant thermodynamic parameters for exploring the moon evolution history.
-
Key words:
- water /
- olivine /
- diffusion /
- lunar mantle
-
Mn+1AXn相材料是三元层状化合物(简称MAX相材料),其中:M代表Ti、V、Zr等过渡金属元素;A代表A组元素;X代表C或者N;n=1, 2, 3, ···[1]。MAX相这一概念最早由Barsoum[2]提出,这类材料普遍具有陶瓷材料和金属材料的双重特性,可在高压、高温、强腐蚀等极端条件下稳定存在[3-4],并表现出较好的稳定性和抗氧化性,具有极其重要的研究价值和广阔的发展前景[5],因此探究高压等极端状态下的晶体性质变化具有重要意义。
近年来,有关三元层状Mn+1AXn相材料的研究很多,主要集中在211相、312相和413相[6]。随着研究的深入,Mn+1A2Xn双“A”层221相、322相等结构被陆续得到,第一种双“A”层MAX相化合物Mo2Ga2C由Hu等[7]于2015年成功制备,2016年Thore等[8]通过第一性原理计算预测出V2Ga2C的存在,V2Ga2C、Ti3Au2C2等双“A”型MAX相的理论预测和实验制备极大地丰富了MAX族化合物[9]。V2Ga2C 是典型的由理论预测得到的新型双“A”层MAX相材料, Thore等[10]根据声子谱没有虚频判定V2Ga2C具有稳定结构,研究发现这类双“A”层的MAX相材料普遍具有较强的金属性,如更好的机械延展性、易于加工等[11]。目前,常压下V2Ga2C的研究日趋丰富,受限于实验条件的复杂性,高压下V2Ga2C的结构、电子、弹性等性能研究较为困难,为此基于密度泛函理论的第一性原理计算能够很好地解决这一问题。
本研究通过第一性原理对V2Ga2C六方结构的能带结构、态密度等电子结构和弹性性能等力学性质进行计算,根据玻恩稳定准则等相关理论,预测高压状态下V2Ga2C结构的力学稳定性,并对高压下V2Ga2C的晶体结构、电子结构和弹性性质等进行分析,为新型双“A”型Mn+1A2Xn相的相关研究提供理论参考。
1. 计算方法与参数
采用第一性原理计算方法,运用基于密度泛函理论的Materials Studio软件中的CASTEP量子力学程序[12-13],选用倒易点阵空间表征的Cepeley-Alder超软赝势[14]。利用总能量的平面波赝势替代离子势,并通过广义梯度近似(Generalized gradient approximation, GGA)中的PBE(Perdew, Burke and Ernzerhof)[15-16]方法对电子间的相互作用和相关势进行校正。为确保总能量和原子间的作用力最小化,采用Broyden-Fletcher-Goldfarb-Shanno(BFGS)算法,布里渊区K点网格数为17 × 17 × 3,平面波截断能选取550 eV。进行原胞的几何优化(Geometry)时,能量收敛标准为5×10−6 eV/atom,最大作用力为0.01 eV/Å,应力偏差小于0.02 GPa,自洽场收敛精度为5×10−7 eV/atom。
2. 结果与讨论
2.1 晶体结构
V2Ga2C为六方晶系,空间群是P63/mmc,每个晶胞有10个原子,晶体结构见图1。V2Ga2C晶体与常见的V2GaC的结构和性质类似,晶胞键角
α =β =90°,γ =120°,不同的是V2Ga2C有双Ga层结构及不同的晶胞键长a(a=b)、c,V2Ga2C晶胞中各原子坐标为V(1/3, 2/3, 0.0645)、Ga(1/3, 2/3, 0.6814)、C(0, 0, 0)。经优化计算,得到V2Ga2C的晶胞参数为a=b=2.950 Å,c=17.807 Å,与Thore等[8]计算得到的数据(a=b=3.064 Å,c=18.153 Å)基本一致,即本研究构建的模型是准确可行的。为了研究高压对V2Ga2C晶胞结构的影响,在0~70 GPa压强范围内以10 GPa为间隔进行结构优化,得到V2Ga2C晶胞的相对晶格参数变化情况,见图2。从图2可以看出,随着压强增大,晶格常数a、c和体积V均有不同程度的减小,同时在压强范围内V2Ga2C晶胞表现出较好的可压缩性,其中相对键长比a/a0和c/c0从1逐渐减小到0.9019和0.9331,相对晶格参数c/a从0 GPa的6.0362上升到70 GPa的6.2455,c轴较a轴随压强增大收缩得较慢,且键长的减小导致了晶胞体积V的缩小,上述晶胞参数的变化均体现了V2Ga2C的各向异性。此外,根据计算得到的V2Ga2C晶胞在不同压力下的晶格参数及相对晶格常数a/a0、c/c0、c/a和相对晶胞体积V/V0的变化趋势平缓,可判定在0~70 GPa压力范围内V2Ga2C很难发生相变,即本研究利用图1的V2Ga2C结构探究压力对其电子性质、弹性性质的影响是合理准确的。
2.2 高压下的力学稳定性
力学稳定性是晶体材料稳定存在的重要因素。为研究压强对V2Ga2C晶胞力学稳定性的影响,从0 GPa开始,以每10 GPa为一个间隔进行结构优化,通过不同压强下的弹性常数预测V2Ga2C晶胞的力学稳定性。通过各个压强状态下V2Ga2C晶胞的结构优化,得到0~80 GPa不同压强状态下的晶体结构,各压强状态下的弹性常数见表1。
表 1 不同压强下V2Ga2C的弹性常数Table 1. Pressure dependences of elastic constants for V2Ga2CPressure/GPa C11/GPa C33/GPa C44/GPa C12/GPa C13/GPa 0 275.07 309.04 88.92 65.69 48.31 10 325.89 437.85 103.70 79.38 101.23 20 392.18 492.57 112.70 113.70 122.66 30 475.27 582.90 99.80 176.94 174.81 40 462.17 636.80 103.00 156.69 180.10 50 524.87 696.25 51.41 228.45 221.66 60 558.67 743.34 29.53 220.05 219.34 70 640.36 854.90 4.53 280.99 275.36 80 618.66 892.67 −84.84 305.13 305.24 弹性常数是晶体对作用力反应最直观的数据体现。根据V2Ga2C的晶胞结构,V2Ga2C晶体的弹性常数具有对称性,即C11= C22,C13=C31=C32=C23,C12=C21,C44=C55。由表1数据可知,弹性常数C11、C33随压强的增大逐渐增大,C44先增大后逐渐变小直至减小到负数,C12、C13和C66也有不同程度的增大。V2Ga2C晶胞为六方晶系,因此可以通过玻恩稳定准则[17]、正交系统的力学稳定性公式[18]以及弹性常数的变化规律,预测V2Ga2C六方三元层状化合物的力学稳定性。
玻恩稳定准则可写为
C12>0,C33>0,C44>0,C11−C12>0,(C11+C12)C33−2C213>0 (1) 验证V2Ga2C晶胞正交系统力学稳定性的公式为
Cij>0(i=j,0⩽i⩽6),C11+C22−2C12>0,C11+C33−2C13>0,C22+C33−2C23>0,C11+C22+C33+2C12+2C13+2C23>0 (2) 将表1的弹性常数代入式(1)、式(2),可知V2Ga2C晶胞在0~70 GPa符合式(1),在80 GPa时不符合式(1)。因此六方V2Ga2C晶胞的的弹性常数在0~70 GPa压强范围内处于力学稳定状态,80 GPa下V2Ga2C晶胞结构不稳定。
2.3 弹性性质
为了研究压强对V2Ga2C晶体弹性性质的影响,在不同的压强下对晶胞结构进行优化,在此基础上计算不同压强状态下的弹性常数(见表1)。弹性常数C11、C22和C33分别表示晶胞受压沿a、b和c轴的线性压缩阻力,C11、C22较小而C33最大,说明V2Ga2C在a、b轴上容易压缩,在c轴上难压缩;弹性常数C44、C55和C66与材料抗剪切变形能力有关,C44还与硬度有关,随压强增大而减小的C44表明V2Ga2C材料抵抗形变的能力一般。
根据Voigt-Reuss-Hill近似理论[19],V2Ga2C的体积弹性模量B的最大值BV、最小值BR和平均值BH,以及剪切弹性模量G的最大值GV、最小值GR和平均值GH可以通过式(3)~式(8)得到
BV=2(C11+C12)+C33+4C139 (3) BR=(C11+C12)C33−2C213C11+C12+2C33−4C13 (4) BH=BV+BR2 (5) GV=C11+C12+2C33−4C13+12C55+12C663 (6) GR=52[(C11+C12)C33−2C213]C55C663BVC55C66+[(C11+C12)C33−2C213](C55+C66) (7) GH=GV+GR2 (8) 根据Pugh准则[17]可以鉴别晶体的韧脆性,BH/GH < 1.74为脆性材料,相反为韧性材料。根据表1弹性常数和式(3)~式(8),可以计算体积模量BH和剪切模量GH,得到压强与BH/GH的关系曲线,见图3。从图3可以明显看出,压强小于20.15 GPa时,V2Ga2C表现为脆性材料,压强为20.15~70.00 GPa时表现为韧性材料。此外,通过式(9)可以预测维氏硬度(HV)的变化(其中K = GH/BH,HV的单位为GPa),维氏硬度随压强的变化见图4。从图4中曲线的变化趋势可以看出,维氏硬度随着压强的增大逐渐变小,原因是V2Ga2C晶胞的键长和a、b轴随压强的增大急剧压缩,故维氏硬度随之减小。
HV=0.92K1.137G0.708H (9) 然而遗憾的是,目前公开发表的有关V2Ga2C在高压状态下的力学性能研究报道较少,难以与本计算得到的理论预测进行对比分析。
2.4 电子性质
为探究压强与V2Ga2C电子性质的关系,在0~70 GPa的压强范围内通过GGA-PBE密度泛函理论计算,得到V2Ga2C的能带结构图、电子总态密度图,其中0 eV处的虚线表示费米能。
下面以0、35和70 GPa的能带结构为例进行分析,如图5所示。从图5可以明显看出,0 GPa下V2Ga2C无带隙,35 GPa下仍无带隙,直到接近力学稳定临界状态的70 GPa下仍未产生带隙,总体上能带曲线仅有很小幅度的变化。由此可知,在力学稳定范围内,V2Ga2C均无带隙,且压强的增加对能带结构的影响很小,即V2Ga2C材料为导体材料且压强对其影响较小或几乎没有影响。
电子态密度也是V2Ga2C电子性质的重要组成部分,选取0、35和70 GPa状态下的电子态密度分析压强与电子态密度的关系,见图6。由图6可知,随着压强增大,V2Ga2C的总态密度在费米能级附近变动较小,对电子性质影响较小。
3. 结 论
基于密度泛函理论的第一性原理,研究了压强对V2Ga2C晶体的力学稳定性及压强对V2Ga2C结构、弹性和电子性质的影响。根据玻恩稳定准则预测了V2Ga2C结构稳定存在的压强区间为0~70 GPa,并通过正交系统的力学稳定公式验证结果可靠。同时,研究了0~70 GPa压强下V2Ga2C的晶体结构、弹性性质与电子结构,压强使V2Ga2C压缩,体积、相对晶胞参数a/a0、c/c0等均有不同程度的减小,都体现了V2Ga2C具有各向异性;随着压强增大,通过弹性常数可知V2Ga2C在a、b轴上较c轴易压缩,且在20.15 GPa时从韧性转变为脆性,其硬度也随之变小;从V2Ga2C在各个压强状态下的态密度和能带结构可知,在力学稳定的条件下压强对V2Ga2C材料的电子性质影响不大。然而目前有关V2Ga2C材料的研究较少,希望本研究结果可以为双“A”型MAX相材料的实验制备和理论研究提供参考。
-
图 4 Ol-5-3橄榄石晶体中平行[100]轴的非偏振红外光谱(900 ℃、1.5 GPa、5 h、NNO;主要的羟基峰位于3 610、3 599、3 572、3 568、3 502、3 444、3 417、3 356和3 329 cm-1;所有光谱都进行了归一化处理)
Figure 4. Unpolarized infrared spectra as a function of wavenumber and position along the [100] axis in sample Ol-5-3 (900 ℃, 1.5 GPa, 5 h, NNO.The major hydroxyl absorption bands are located at 3 610, 3 599, 3 572, 3 568, 3 502, 3 444, 3 417, 3 356 and 3 329 cm-1.All the spectra are normalized to 1 cm of thickness.)
图 5 Ol-7-1橄榄石晶体(2.5 GPa、900 ℃、NNO、样品尺寸2.44 mm×0.36 mm×2.09 mm)中水沿[100]和[001]轴的扩散剖面(相应的化学扩散速率标记在图中,黑色圆点为实验数据,实线为根据扩散定律拟合的扩散剖面)
Figure 5. Hydroxyl content as a function of position parallel to [100] and [001] crystallographic axes in sample Ol-7-1 (2.5 GPa, 900 ℃, 5 h, buffered by NNO, size 2.44 mm×0.36 mm×2.09 mm.Diffusion coefficients are shown in each plot.Black points are IR data, and the solid lines are fitted diffusion profiles.)
表 1 水在橄榄石中扩散的实验条件及样品尺寸
Table 1. Experimental conditions of water diffusion in olivine and crystal sizes of samples
Sample Pressure/GPa Temperature/℃ Duration/h Buffer Capsule Size before hydration[100]×[010]×[001]/(mm×mm×mm) Size for FTIR measurement[100]×[010]×[001]/(mm×mm×mm) Ol-5-3 1.5 900 5 NNO Ni 2.90×1.80×1.64 2.90×0.30*×1.64 Ol-7-1 2.5 900 5 NNO Ni 2.44×2.10×2.09 2.44×0.36*×2.09 Ol-7-2 3.0 900 5 NNO Ni 1.86×2.08×2.41 1.86×0.21*×2.41 No.1-2 2.5 900 5 IW Fe 2.42×2.47×1.65 2.42×0.22*×1.65 No.2-3 2.5 1 050 2/3 IW Fe 1.87×2.08×2.44 1.87×0.16*×2.44 No.1-3 2.5 1 200 1/3 IW Fe 2.31×2.33×1.75 2.31×0.33*×1.75 Note: The asterisk symbols represent sample thickness; NNO and IW stand for nickel-nickel oxide and iron-wüstite, respectively. 表 2 水沿橄榄石各晶轴的扩散速率
Table 2. Diffusion coefficients of water along each axis in olivines
Sample Pressure/GPa Temperature/℃ lg fO2 Duration/h C0/10-5 D[100]/(10-12 m2·s-1) D[001]/(10-12 m2·s-1) Ol-5-3 1.5 900 -12.0 5 2.7 2.15 0.35 Ol-7-1 2.5 900 -12.0 5 6.0 2.35 0.26 Ol-7-2 3.0 900 -12.0 5 7.1 0.70 0.40 No.1-2 2.5 900 -16.7 5 10.3 0.31 0.16 No.2-3 2.5 1 050 -14.1 2/3 13.1 ND 3.50 No.1-3 2.5 1 200 -11.9 1/3 12.5 8.50 6.75 Note: (1) lg fO2 was calculated using O'Neill's equation[23] for NNO and O'Neill and Pownceby's equation[24] for IW;
(2) ND means "not detected", and D[010] in all samples were not detected.表 3 回收橄榄石样品中的红外羟基波数和羟基结合机制
Table 3. Hydroxyl band positions in all recovered olivines and hydroxyl incorporation mechanisms
Hydroxyl band positions/cm-1 Band assignments Ol-5-3 Ol-7-1 Ol-7-2 No.1-2 No.2-3 No.1-3 3 182 M site 3 197 3 224 M site 3 232 M site 3 263 3 263 3 329 3 329 3 321 Me3+ site 3 356 3 356 3 352 3 352 3 356 3 344 Me3+ site 3402 3 398 3 390 3 394 Ti4+ 3 417 3 421 3 425 3 410 3 410 3 433 3 448 3 456 3 452 3 452 3 444 Si site 3 487 3 483 3 475 3 479 3 475 3 502 3 494 3 506 3 510 3 514 3 525 3 521 Ti4+ 3 545 3 568 3 568 3 556 3 568 3 560 Si site 3 572 3 575 Ti4+ 3 591 3 599 3 599 3 602 3 610 Si site 3 629 -
[1] CANUP R M.Dynamics of lunar formation[J].Annual Review of Astronomy & Astrophysics, 2004, 42(1):441-475. doi: 10.1146/annurev.astro.41.082201.113457?src=recsys [2] TAYLOR S R, PIETERS C M, MACPHERSON G J.Earth-moon system, planetary science, and lessons learned[J].Reviews in Mineralogy and Geochemistry, 2006, 60(1):657-704. doi: 10.2138/rmg.2006.60.7 [3] SHEARER C K, HESS P C, WIECZOREK M A, et al.Thermal and magmatic evolution of the Moon[J].Reviews in Mineralogy and Geochemistry, 2006, 60(1):365-518. doi: 10.2138/rmg.2006.60.4 [4] SAAL A E, HAURI E H, CASCIO M L, et al.Volatile content of lunar volcanic glasses and the presence of water in the Moon's interior[J].Nature, 2008, 454(7201):192-195. doi: 10.1038/nature07047 [5] BOYCE J W, LIU Y, ROSSMAN G R, et al.Lunar apatite with terrestrial volatile abundances[J].Nature, 2010, 466(7305):466-469. doi: 10.1038/nature09274 [6] MCCUBBIN F M, STEELE A, HAURI E H, et al.Nominally hydrous magmatism on the Moon[J].Proceedings of the National Academy of Sciences, 2010, 107(25):11223-11228. doi: 10.1073/pnas.1006677107 [7] GREENWOOD J P, ITOH S, SAKAMOTO N, et al.Hydrogen isotope ratios in lunar rocks indicate delivery of cometary water to the Moon[J].Nature Geoscience, 2011, 4(2):79-82. doi: 10.1038/ngeo1050 [8] HAURI E H, WEINREICH T, SAAL A E, et al.High pre-eruptive water contents preserved in lunar melt inclusions[J].Science, 2011, 333(6039):213-215. doi: 10.1126/science.1204626 [9] BARNES J J, FRANCHI I A, ANAND M, et al.Accurate and precise measurements of the D/H ratio and hydroxyl content in lunar apatites using NanoSIMS[J].Chemical Geology, 2013, 337:48-55. https://www.sciencedirect.com/science/article/pii/S000925411200589X [10] TARTÈSE R, ANAND M, BARNES J J, et al.The abundance, distribution, and isotopic composition of hydrogen in the Moon as revealed by basaltic lunar samples:implications for the volatile inventory of the Moon[J].Geochimica et Cosmochimica Acta, 2013, 122:58-74. doi: 10.1016/j.gca.2013.08.014 [11] TARTÈSE R, ANAND M.Late delivery of chondritic hydrogen into the lunar mantle:insights from mare basalts[J].Earth and Planetary Science Letters, 2013, 361:480-486. doi: 10.1016/j.epsl.2012.11.015 [12] BARNES J J, TARTÈSE R, ANAND M, et al.The origin of water in the primitive Moon as revealed by the lunar highlands samples[J].Earth and Planetary Science Letters, 2014, 390:244-252. doi: 10.1016/j.epsl.2014.01.015 [13] CHEN Y, ZHANG Y X, LIU Y, et al.Water, fluorine, and sulfur concentrations in the lunar mantle[J].Earth and Planetary Science Letters, 2015, 427:37-46. doi: 10.1016/j.epsl.2015.06.046 [14] GOSWAMI J N.Water in the lunar interior[J].Current Science, 2016, 110(8):1536-1539. http://adsabs.harvard.edu/abs/2014AGUFM.V31A4713H [15] 李霓, 吴树青.熔融包裹体及其挥发分研究概况及分析方法简析[J].地球与环境, 2004, 32(3):14-20. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200002001.htmLI N, WU S Q.Progress in the study of melt inclusions & their volatiles and analysis methods [J].Earth and Environment, 2004, 32(3):14-20. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ200002001.htm [16] PORTNYAGIN M, ALMEEV R, MATVEEV S, et al.Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma[J].Earth and Planetary Science Letters, 2008, 272(3):541-552. https://www.sciencedirect.com/science/article/pii/S0012821X08003476 [17] JOHNSON E R, WALLACE P J, CASHMAN K V, et al.Magmatic volatile contents and degassing-induced crystallization at Volcán Jorullo, Mexico:implications for melt evolution and the plumbing systems of monogenetic volcanoes[J].Earth and Planetary Science Letters, 2008, 269(3):478-487. https://www.sciencedirect.com/science/article/pii/S0012821X08001593 [18] HU S, LIN Y, ZHANG J, et al.NanoSIMS analyses of apatite and melt inclusions in the GRV 020090 Martian meteorite:hydrogen isotope evidence for recent past underground hydrothermal activity on Mars[J].Geochimica et Cosmochimica Acta, 2014, 140:321-333. doi: 10.1016/j.gca.2014.05.008 [19] GAETANI G A, GROVE T L.The influence of water on melting of mantle peridotite[J].Contributions to Mineralogy and Petrology, 1998, 131(4):323-346. doi: 10.1007/s004100050396 [20] YOSHINO T, MATSUZAKI T, SHATSKIY A, et al.The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle[J].Earth and Planetary Science Letters, 2009, 288(1):291-300. https://www.sciencedirect.com/science/article/pii/S0012821X09005664 [21] REGENAUER-LIEB, KOHL T.Water solubility and diffusivity in olivine:its role in planetary tectonics[J].Mineralogical Magazine, 2003, 67(4):697-715. doi: 10.1180/0026461036740128 [22] DEMOUCHY S, MACKWELL S.Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine[J].Physics and Chemistry of Minerals, 2006, 33(5):347-355. doi: 10.1007/s00269-006-0081-2 [23] O'NEILL H S C.Free energies of formation of NiO, CoO, Ni2SiO4 and Co2SiO4[J].American Mineralogist, 1987, 72:280-291. doi: 10.1007/BF00310701 [24] O'NEILL H S C, POWNCEBY M I.Thermodynamic data from redox reactions at high temperatures.Ⅱ.the MnO-Mn3O4 oxygen buffer, and implications for the thermodynamic properties of MnO and Mn3O4[J].Contributions to Mineralogy and Petrology, 1993, 114(3):315-320. doi: 10.1007/BF01046534 [25] BROMILEY G D, KEPPLER H.An experimental investigation of hydroxyl solubility in jadeite and Na-rich clinopyroxenes[J].Contributions to Mineralogy and Petrology, 2004, 147(2):189-200. doi: 10.1007/s00410-003-0551-1 [26] MACKWELL S J, KOHLSTEDT D L.Diffusion of hydrogen in olivine:implications for water in the mantle[J].Journal of Geophysical Research:Solid Earth, 1990, 95(B4):5079-5088. doi: 10.1029/JB095iB04p05079 [27] PATERSON M S.The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials[J].Bull Mineral, 1982, 105:20-29. http://ci.nii.ac.jp/naid/80001179570/ [28] KOHLSTEDT D L, MACKWELL S J.Diffusion of hydrogen and intrinsic point defects in olivine[J].Zeitschrift für Physikalische Chemie, 1998, 207(1/2):147-162. https://experts.umn.edu/en/publications/diffusion-of-hydrogen-and-intrinsic-point-defects-in-olivine [29] 张培培, 刘佳.橄榄石中H的结合机制及扩散行为[J].岩石矿物学杂志, 2013, 32(5):708-732. http://www.cqvip.com/QK/94932X/201305/47454445.htmlZHANG P P, LIU J.The incorporation mechanisms and diffusion kinetics of hydrogen in olivine[J].Acta Petrologica et Mineralogica, 2013, 32(5):708-732. http://www.cqvip.com/QK/94932X/201305/47454445.html [30] MATVEEV S, O'NEILL H S C, BALLHAUS C, et al.Effect of silica activity on OH- IR spectra of olivine:implications for low-aSiO2 mantle metasomatism[J].Journal of Petrology, 2001, 42(4):721-729. doi: 10.1093/petrology/42.4.721 [31] BAI Q, KOHLSTEDT D L.Effects of chemical environment on the solubility and incorporation mechanism for hydrogen in olivine[J].Physics and Chemistry of Minerals, 1993, 19(7):460-471. doi: 10.1007/BF00203186 [32] LEMAIRE C, KOHN S C, BROOKER R A.The effect of silica activity on the incorporation mechanisms of water in synthetic forsterite:a polarised infrared spectroscopic study[J].Contributions to Mineralogy and Petrology, 2004, 147(1):48-57. doi: 10.1007/s00410-003-0539-x [33] ZHAO Y H, GINSBERG S B, KOHLSTEDT D L.Solubility of hydrogen in olivine:dependence on temperature and iron content[J].Contributions to Mineralogy and Petrology, 2004, 147(2):155-161. doi: 10.1007/s00410-003-0524-4 [34] BERRY A J, HERMANN J, O'NEILL H S C, et al.Fingerprinting the water site in mantle olivine[J].Geology, 2005, 33(11):869-872. doi: 10.1130/G21759.1 [35] MATVEEV S, PORTNYAGIN M, BALLHAUS C, et al.FTIR spectrum of phenocryst olivine as an indicator of silica saturation in magmas[J].Journal of Petrology, 2004, 46(3):603-614. doi: 10.1093/petrology/egh090 [36] DEMOUCHY S, JACOBSEN S D, GAILLARD F, et al.Rapid magma ascent recorded by water diffusion profiles in mantle olivine[J].Geology, 2006, 34(6):429-432. doi: 10.1130/G22386.1 [37] GRANT K J, KOHN S C, BROOKER R A.Solubility and partitioning of water in synthetic forsterite and enstatite in the system MgO-SiO2-H2O±Al2O3[J].Contributions to Mineralogy and Petrology, 2006, 151(6):651-664. doi: 10.1007/s00410-006-0082-7 [38] GRANT K J, BROOKER R A, KOHN S C, et al.The effect of oxygen fugacity on hydroxyl concentrations and speciation in olivine:implications for water solubility in the upper mantle[J].Earth and Planetary Science Letters, 2007, 261(1):217-229. https://www.sciencedirect.com/science/article/pii/S0012821X07004189 [39] WALKER A M, HERMANN J, BERRY A J, et al.Three water sites in upper mantle olivine and the role of titanium in the water weakening mechanism[J].Journal of Geophysical Research:Solid Earth, 2007, 112(B5):B004620. https://openresearch-repository.anu.edu.au/handle/1885/33680 [40] KOVÁCS I, O'NEILL H S C, HERMANN J, et al.Site-specific infrared OH absorption coefficients for water substitution into olivine[J].American Mineralogist, 2010, 95(2/3):292-299. http://adsabs.harvard.edu/abs/2010AmMin..95..292K [41] INGRIN J, LIU J, DEPECKER C, et al.Low-temperature evolution of OH bands in synthetic forsterite, implication for the nature of H defects at high pressure[J].Physics and Chemistry of Minerals, 2013, 40(6):499-510. doi: 10.1007/s00269-013-0587-3 [42] DEMOUCHY S, THORAVAL C, BOLFAN-CASANOVA N, et al.Diffusivity of hydrogen in iron-bearing olivine at 3 GPa[J].Physics of the Earth and Planetary Interiors, 2016, 260:1-13. doi: 10.1016/j.pepi.2016.08.005 [43] DEMOUCHY S, MACKWELL S.Water diffusion in synthetic iron-free forsterite[J].Physics and Chemistry of Minerals, 2003, 30(8):486-494. doi: 10.1007/s00269-003-0342-2 [44] SMITH D E, ZUBER M T, NEUMANN G A, et al.Topography of the Moon from the Clementine lidar[J].Journal of Geophysical Research:Planets, 1997, 102(E1):1591-1611. doi: 10.1029/96JE02940 [45] WIECZOREK M A, JOLLIFF B L, KHAN A, et al.The constitution and structure of the lunar interior[J].Reviews in Mineralogy and Geochemistry, 2006, 60(1):221-364. doi: 10.2138/rmg.2006.60.3 [46] WEBER R C, LIN P Y, GARNERO E J, et al.Seismic detection of the lunar core[J].Science, 2011, 331(6015):309-312. doi: 10.1126/science.1199375 [47] HESS P C, PARMENTIER E M.A model for the thermal and chemical evolution of the Moon's interior:implications for the onset of mare volcanism[J].Earth and Planetary Science Letters, 1995, 134(3/4):501-514. http://www.sciencedirect.com/science/article/pii/0012821X95001383 [48] ZIETHE R, SEIFERLIN K, HIESINGER H.Duration and extent of lunar volcanism:comparison of 3D convection models to mare basalt ages[J].Planetary and Space Science, 2009, 57(7):784-796. doi: 10.1016/j.pss.2009.02.002 [49] TAYLOR S R, JAKES P. The geochemical evolution of the Moon[C]//Lunar and Planetary Science Conference Proceedings, 1974, 5: 1287-1305. [50] SNYDER G A, TAYLOR L A, NEAL C R.A chemical model for generating the sources of mare basalts:combined equilibrium and fractional crystallization of the lunar magmasphere[J].Geochimica et Cosmochimica Acta, 1992, 56(10):3809-3823. doi: 10.1016/0016-7037(92)90172-F [51] LONGHI J.A new view of lunar ferroan anorthosites:postmagma ocean petrogenesis[J].Journal of Geophysical Research:Planets, 2003, 108(E8):5083. doi: 10.1029/2002JE001941 [52] ELARDO S M, DRAPER D S, SHEARER C K.Lunar Magma Ocean crystallization revisited:bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite[J].Geochimica et Cosmochimica Acta, 2011, 75(11):3024-3045. doi: 10.1016/j.gca.2011.02.033 [53] YAMAMOTO S, NAKAMURA R, MATSUNAGA T, et al.Possible mantle origin of olivine around lunar impact basins detected by SELENE[J].Nature Geoscience, 2010, 3(8):533-536. doi: 10.1038/ngeo897 [54] LIN Y H, TRONCHE E J, STEENSTRA E S, et al.Evidence for an early wet Moon from experimental crystallization of the lunar magma ocean[J].Nature Geoscience, 2016, 10(1):14-18. http://www.nature.com/ngeo/journal/v10/n1/ngeo2845/metrics [55] LIN Y, TRONCHE E J, STEENSTRA E S, et al.Experimental constraints on the solidification of a nominally dry lunar magma ocean[J].Earth and Planetary Science Letters, 2017, 471:104-116. doi: 10.1016/j.epsl.2017.04.045 [56] WADHWA M.Redox conditions on small bodies, the Moon and Mars[J].Reviews in Mineralogy and Geochemistry, 2008, 68(1):493-510. doi: 10.2138/rmg.2008.68.17 [57] 蒙伟娟, 陈祖安, 白武明.地幔柱与岩石圈相互作用过程的数值模拟[J].地球物理学报, 2015, 58(2):495-503. doi: 10.6038/cjg20150213MENG W J, CHEN Z A, BAI W M.Numerical simulation on process of the plume-lithosphere interaction[J].Chinese Journal of Geophysics, 2015, 58(2):495-503. doi: 10.6038/cjg20150213 [58] WIECZOREK M A.The interior structure of the moon:what does geophysics have to say?[J].Elements, 2009, 5(1):35-40. doi: 10.2113/gselements.5.1.35 [59] SPERA F J.Aspects of magma transport[M].New Jersey:Princeton University Press, 1980:265-323. [60] SELVERSTONE J, STERN C R.Petrochemistry and recrystallization history of granulite xenoliths from the Pali-Aike volcanic field, Chile[J].American Mineralogist, 1983, 68(11/12):1102-1112. -