动态发射率与辐射亮度同时测量实验中的时间精确同步技术

刘盛刚 李加波 李俊 薛桃 王翔 翁继东 李泽仁

刘盛刚, 李加波, 李俊, 薛桃, 王翔, 翁继东, 李泽仁. 动态发射率与辐射亮度同时测量实验中的时间精确同步技术[J]. 高压物理学报, 2018, 32(3): 033201. doi: 10.11858/gywlxb.20170634
引用本文: 刘盛刚, 李加波, 李俊, 薛桃, 王翔, 翁继东, 李泽仁. 动态发射率与辐射亮度同时测量实验中的时间精确同步技术[J]. 高压物理学报, 2018, 32(3): 033201. doi: 10.11858/gywlxb.20170634
LIU Shenggang, LI Jiabo, LI Jun, XUE Tao, WANG Xiang, WENG Jidong, LI Zeren. Time Precision Synchronization in Simultaneous Measurement of Dynamic Emissivity and Radiance[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 033201. doi: 10.11858/gywlxb.20170634
Citation: LIU Shenggang, LI Jiabo, LI Jun, XUE Tao, WANG Xiang, WENG Jidong, LI Zeren. Time Precision Synchronization in Simultaneous Measurement of Dynamic Emissivity and Radiance[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 033201. doi: 10.11858/gywlxb.20170634

动态发射率与辐射亮度同时测量实验中的时间精确同步技术

doi: 10.11858/gywlxb.20170634
基金项目: 

国家自然科学基金 11604313

中国工程物理研究院科学技术发展基金 2013B040162

详细信息
    作者简介:

    刘盛刚(1983-), 男, 硕士, 副研究员, 主要从事光学测试技术研究.E-mail:liushenggangpla@126.com

  • 中图分类号: TN247;O521.3

Time Precision Synchronization in Simultaneous Measurement of Dynamic Emissivity and Radiance

  • 摘要: 分析了轻气炮实验中飞片速度漂移带来的冲击波到达样品/窗口界面时刻漂移问题、主要影响因素以及动态发射率与辐射亮度同时测量实验中的时序要求,采用镀膜光纤探针作为同时测量实验中动态发射率测量照明光源的触发装置,设计了光纤探针-样品之间的距离,并对设计余量进行了简单分析,解决了同时测量实验中的时间精确同步问题。在2发动态考核实验中,设计的飞片速度为4.1 km/s,实测飞片速度漂移量分别为70和210 m/s,动态发射率测量信号按照实验预期叠加在了样品/窗口界面热辐射信号平台之上,时序控制能够满足动态发射率与辐射亮度同时测量实验中的时间精确同步要求。

     

  • 图  动态发射率与辐射亮度同时测量的原理示意图

    Figure  1.  Schematic of simultaneous measurement of dynamic emissivity and radiance

    图  动态发射率与辐射亮度同时测量实验光路示意图

    Figure  2.  Experimental layout of simultaneous measurement of dynamic emissivity and radiance

    图  时序关系示意图

    Figure  3.  Schematic of time sequence

    图  OBB弹速测量结果(a)和镀膜光纤探针输出信号(b)

    Figure  4.  Velocity measurement of OBB system (a) and output signal of two coating fiber pins (b)

    图  获取的叠加信号

    Figure  5.  Superimposing signals

  • [1] 谭华.实验冲击波物理导引[M].北京:国防工业出版社, 2007.

    TAN H.Introduction to experimental shock wave physics[M].Beijing:National Defence Industry Press, 2007.
    [2] KORMER S B, SINTISYN M V, KILILLOV G A, et al.Experimental determination of temperature in shock-compressed NaCl and KCl and of their melting curves at pressures up to 700 kbar[J].Soviet Journal of Experimental & Theoretical Physics, 1965, 21(4):689.
    [3] LYZENGA G A, AHRENS T J.Multiwavelength optical pyrometer for shock compression experiments[J].Review of Scientific Instruments, 1979, 50(11):1421-1424. doi: 10.1063/1.1135731
    [4] RADOUSKY H B, MITCHELL A C.A fast UV/visible pyrometer for shock temperature measurements to 20 000 K[J].Review of Scientific Instruments, 1989, 60(12):3707-3780. doi: 10.1063/1.1140479
    [5] HOLMES N C.Fiber-coupled optical pyrometer for shock wave studies[J].Review of Scientific Instruments, 1995, 66(3):2615-2618. doi: 10.1063/1.1145597
    [6] FAT'YANOV O V, ASIMOW P D.Contributed review:absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp[J].Review of Scientific Instruments, 2015, 86(10):229-276.
    [7] SEIFTER A, GROVER M, HOLTKAMP D B, et al.Emissivity measurements of shocked tin using a multi-wavelength integrating sphere[J].Journal of Applied Physics, 2011, 110(9):093508. doi: 10.1063/1.3656429
    [8] TURLY W D, HOLTKAMP D B, VEER L R, et al.Infrared emissivity of tin upon release of a 25 GPa shock into a lithium fluoride window[J].Journal of Applied Physics, 2011, 110(10):103510. doi: 10.1063/1.3657465
    [9] LA LONE B M, STEVENS G D, TURLY W D, et al.Release path temperature of shock-compressed tin from dynamic reflectance and radiance measurements[J].Journal of Applied Physics, 2013, 114(6):063506. doi: 10.1063/1.4817764
    [10] WEN C D. Emissivity characteristics of aluminum alloy surfaces and assessment of multispectral radiation thermometry emissivity models[D]. West Lafayette, IN: Purdue University, 2005.
    [11] POULSEN P, HARE D E. Temperature and emissivity of a shocked surface: a first experiment: UCRL-ID-146845[R]. Livermore, CA: Lawrence Livermore National Laboratory, 2002.
    [12] CAZAMIAS J U, HARE D E, POULSEN P. Progress in infrared pyrometery measurements of shocked solids: UCRL-JC-146049[R]. Livermore, CA: Lawrence Livermore National Laboratory, 2001.
    [13] KONDO K, SAWAOKA A, SAITO S.Magnetoflyer method for measuring gas-gun projectile velocities[J].Review of Scientific Instruments, 1997, 48(12):1581-1582.
    [14] 施尚春, 陈攀森, 黄跃.高速弹丸的磁感应测速方法[J].高压物理学报, 1991, 5(3):205-214. doi: 10.11858/gywlxb.1991.03.008

    SHI S C, CHEN P S, HUANG Y.Velocity measurement of magnet induced system for projectile[J].Chinese Journal of High Pressure Physics, 1991, 5(3):205-214. doi: 10.11858/gywlxb.1991.03.008
    [15] 史有程, 刘风琴.一个测量气炮弹丸速度的激光测量装置[J].爆炸与冲击, 1986(1):73-81.

    SHI Y C, LIU F Q.A laser system for measuring the projectile velocity in gas gan[J].Explosion and Shock Waves, 1986(1):73-81.
  • 加载中
图(5)
计量
  • 文章访问数:  7789
  • HTML全文浏览量:  3355
  • PDF下载量:  206
出版历程
  • 收稿日期:  2017-08-22
  • 修回日期:  2017-09-18

目录

    /

    返回文章
    返回