Thermodynamic Properties of Mg2X (X=Si, Ge) Phases under Pressure by First-Principles Calculations
-
摘要: 采用基于密度泛函理论的第一性原理方法,研究了压力作用下Mg2Si和Mg2Ge的结构、弹性和热力学性质。计算结果表明:0 GPa压力作用下两者的晶格参数与实验值以及其他理论值吻合较好,且相对晶格常数a/a0和晶胞体积V/V0均随压力的增大而减小;在0~25 GPa压力作用下,Mg2Si和Mg2Ge相体模量B、剪切模量G、杨氏模量E均随压力的增大而增大,材料的刚度和塑性均增强,当压力达到15 GPa时,材料由脆性转变为延性。最后借助准谐德拜模型和Gibbs软件,研究了温度与压力对Mg2Si和Mg2Ge的德拜温度、体模量、热容和热膨胀系数的影响。Abstract: The structural, elastic and thermodynamic properties of Mg2Si and Mg2Ge phases under pressure were calculated using the first-principles based on the density functional.The calculated results indicated that the lattice parameters under 0 GPa are fairly consistent with the experimental value and other theoretical data.The ratio of a/a0 and V/V0 decreased as the external pressure increases.An appropriate pressure (0-25 GPa) can improve their stiffness and plasticity because the bulk modulus B, shear modulus G, and Young's modulus E almost linearly increase with pressure.The brittleness of the material turns to ductility at 15 GPa.Finally, the effect of temperature and pressure on the Debye temperature, bulk modulus, heat capacity and linear thermal expansion coefficient was studied using the quasi-harmonic Debye model and Gibbs software.
-
Key words:
- first-principles /
- Mg2Si /
- Mg2Ge /
- structural property /
- elastic property /
- thermodynamic property
-
表 1 Mg2Si和Mg2Ge的晶格常数
Table 1. Equilibrium crystal parameters (a, c) of Mg2Si and Mg2Ge
表 2 Mg2Si和Mg2Ge的弹性常数
Table 2. Moduli of Mg2Si and Mg2Ge
Phase p/GPa C11 C12 C44 B/GPa G/GPa E/GPa G/B υ 0 110.48 22.04 44.72 51.52 44.52 103.69 0.86 0.160 Calc.[18] 115.21 22.14 43.11 53.163 44.48 104.34 0.84 0.173 5 143.03 42.46 52.29 75.99 51.49 126.00 0.68 0.22 Mg2Si 10 158.67 52.89 61.20 88.15 57.87 142.45 0.66 0.23 15 180.72 68.97 61.32 106.22 59.14 149.65 0.56 0.27 20 200.49 85.12 64.56 123.58 61.81 158.93 0.50 0.27 25 218.17 102.33 66.19 140.94 62.88 164.22 0.45 0.31 0 105.80 21.18 41.90 49.39 42.07 98.29 0.85 0.17 Calc.[19] 113.56 20.56 45.70 51.56 46.02 106.40 0.85 0.16 5 140.74 45.52 55.27 77.26 52.21 127.83 0.68 0.22 Mg2Ge 10 154.03 50.75 54.12 85.17 53.13 131.95 0.62 0.24 15 175.03 68.13 59.79 103.76 57.25 145.07 0.55 0.27 20 191.53 83.03 61.82 119.19 58.79 151.48 0.49 0.29 25 209.82 101.41 63.24 137.54 59.62 156.29 0.43 0.31 -
[1] 陈茜, 谢泉, 杨创华, 等.掺杂Mg2Si电子结构及光学性质的第一性原理计算[J].光学学报, 2009, 29(1):229-235. http://cqvip.com/QK/95626X/200901/29234382.htmlCHEN Q, XIE Q, YANG C H, et al.First-principles calculation of electronic structure and optical properties of Mg2Si with doping[J].Acta Optica Sinica, 2009, 29(1):229-235. http://cqvip.com/QK/95626X/200901/29234382.html [2] 傅利, 赵宇宏, 杨晓敏, 等.Mg-Al-Si-Ca合金系金属间化合物的电子结构和力学性能的第一性原理计算[J].稀有金属材料与工程, 2014, 43(11):2733-2738. http://www.cnki.com.cn/Article/CJFDTotal-COSE201411035.htmFU L, ZHAO Y H, YANG X M, et al.First-principle calculation for electronic structure and mechanical properties of intermetallics in Mg-Al-Si-Ca Alloy[J].Rare Metal Materials and Engineering, 2014, 43(11):2733-2738. http://www.cnki.com.cn/Article/CJFDTotal-COSE201411035.htm [3] ZHANG J, FAN Z, WANG Y Q, et al.Microstructural development of Al-15 wt.% Mg2Si in situ composite with mischmetal addition[J].Materials Science and Engineering A, 2000, 281(1/2):104-112. https://www.researchgate.net/publication/271916998_Application_Prospects_and_Microstructural_Features_in_Laser-Induced_Rapidly_Solidified_High-Entropy_Alloys [4] 余本海, 刘墨林, 陈东.第一性原理研究Mg2Si同质异相体的结构、电子结构和弹性性质[J].物理学报, 2011, 60(8):584-594. http://wuxizazhi.cnki.net/Sub/jcwl/a/WLXB201107076.htmlYU B H, LIU M L, CHEN D.First principles study of structural, electronic and elastic properties of Mg2Si polymorphs[J].Acta Physica Sinica, 2011, 60(8):584-594. http://wuxizazhi.cnki.net/Sub/jcwl/a/WLXB201107076.html [5] TANI J, KIDO H.First-principles and experimental studies of impurity doping into Mg2Si[J].Intermetallics, 2008, 16(3):418-423. doi: 10.1016/j.intermet.2007.12.001 [6] JUND P, VIENNOIS R, COLINET C, et al.Lattice stability and formation energies of intrinsic defects in Mg2Si and Mg2Ge via first principles simulations[J].Journal of Physics:Condensed Matter, 2013, 25(3):4469-4487. [7] GANESHAN S, SHANG S L, WANG Y, et al.Temperature dependent elastic coefficients of Mg2X (X=Si, Ge, Sn, Pb) compounds from first-principles calculations[J].Journal of Alloys and Compounds, 2010, 498(2):191-198. doi: 10.1016/j.jallcom.2010.03.153 [8] WANG H, JIN H, CHU W, et al.Thermodynamic properties of Mg2Si and Mg2Ge investigated by first principles method[J].Journal of Alloys and Compounds, 2010, 499(1):68-74. doi: 10.1016/j.jallcom.2010.01.134 [9] 张建新, 高爱华, 郭学锋, 等.Mg-Sn-Si合金中Mg2(Si, Sn)复合相的结构与性能研究[J].物理学报, 2013, 62(17):483-488.ZHANG J X, GAO A H, GUO X F, et al.Study on microstructure and poperties of Mg2(Si, Sn) compound phase in Mg-Sn-Si magnesium alloy[J].Acta Physica Sinica, 2013, 62(17):483-488. [10] SHI D M, WEN B, MELNIK R.First-principles studies of Al-Ni intermetallic compounds[J].Journal of Solid State Chemistry, 2009, 182(10):2664-2669. doi: 10.1016/j.jssc.2009.07.026 [11] WANG F, SUN S J, YU B, et al.First principles investigation of binary intermetallics in Mg-Al-Ca-Sn alloy:stability, electronic structures, elastic properties and thermodynamic properties[J].Transactions of Nonferrous Metals Society of China, 2016, 26(1):203-212. doi: 10.1016/S1003-6326(16)64107-9 [12] FAGAN S B, MOTA R, BAIERLE R J.Stability investigation and thermal behavior of a hypothetical silicon nanotube[J].Journal of Molecular Structure, 2001, 539(1/2/3):101-106. https://www.sciencedirect.com/science/article/pii/S0166128000007776 [13] CHADI D J.Special points for Brillouin-zone integrations[J].Physical Review B, 1977, 16(4):5188-5192. [14] FISCHER T H, ALMLOF J.General methods for geometry and wave function optimization[J].Journal of Physical Chemistry, 1992, 96(24):9768-9774. doi: 10.1021/j100203a036 [15] TANI J, KIDO H.Lattice dynamics of Mg2Si and Mg2Ge compounds from first-principles calculations[J].Computational Materials Science, 2008, 42(3):531-536. doi: 10.1016/j.commatsci.2007.08.018 [16] CAO Y, ZHU J C, NONG Z S, et al.First-principles studies of the structural, elastic, electronic and thermal properties of Ni3Nb[J].Computational Materials Science, 2013, 77(3):208-213. [17] PUGH S F.Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J].Philosophical Magazine, 1954, 45(367):823-843. [18] 任玉艳, 刘桐宇, 李英民.Mg2Si金属间化合物的结构稳定性, 热力学和力学性能的第一性原理计算[J].中国科学:物理学力学天文学, 2016, 46(8):26-33. http://wuxizazhi.cnki.net/Sub/jcwl/a/WLXB201107076.htmlREN Y Y, LIU T Y, LI Y M.First-principles calculation on structure stability, thermodynamic and mechanical properties of Mg2Si intermetallics[J].Scientia Sinica physica, Mechanica and Astronomica, 2016, 46(8):26-33. http://wuxizazhi.cnki.net/Sub/jcwl/a/WLXB201107076.html [19] 常少梅.压力作用下Mg2X(X=Sn, Ge, Si)晶体结构与弹性性质[J].兰州理工大学学报, 2012, 38(5):168-171.CHANG S M.Structural and elastic properties of Mg2X (X=Sn, Gn, Si) under pressure[J].Journal of Lanzhou University of Technology, 2012, 38(5):168-171. [20] GUO S D.First-principles calculations of Mg2X (X=Si, Ge, Sn) semiconductors with the calcium fluorite structure[J].Journal of Semiconductors, 2015, 36(5):8-13.