Influence of Aluminum Particle Size on Explosion Performance and Thermal Stability of Thermobaric Explosive
-
摘要: 为了研究铝粉粒径对温压炸药在有限空间内爆炸能量输出的影响,在温压炸药中分别添加了粒径为40 nm、3 μm和35 μm的3种铝粉。利用爆炸容器进行内爆炸实验,获得了冲击波压力时程曲线,经计算分析得到1.0、1.2和1.5 m处的超压和冲量数值,并采用差示扫描量热仪(DSC)研究这3种粒径铝粉对温压炸药热安定性的影响。实验研究结果表明:铝粉粒径对温压炸药在有限空间的爆炸能量有较大影响,含粒径为3 μm的样品2在各距离处的超压较样品1提升了6.0%以上,较样品3提升了10%以上;3组样品的热安定性均随着铝粉粒径的减小而降低,活化能最大降幅达31.1%,升温速率接近零时的峰值温度(Tp0)最大降低了11.7℃。Abstract: In the present study we fabricated a thermobaric explosive with 3 kinds of aluminum powders (40 nm, 3 μm and 35 μm) to study the influence of the aluminum particle size on the explosive energy output of the thermobaric explosive in a confined space.We measured its shock wave pressure histories at 1.0 m, 1.2 m and 1.5 m of the explosion chamber, and obtained the overpressure and impulse values by analyzing the curves.We also studied the thermal decomposition of thermobaric explosives with different particle sizes of aluminum powder using the DSC.The results show that the aluminum particle size has a great influence on the explosion energy of the thermobaric explosive in a confined space, the overpressure of 2# sample with particle size of 3 μm is at least 6.0% and 10% higher than 1# and 3# sample at each distance, the thermal stability of the 3 samples reduces with the decrease of the aluminum particle size, the biggest falling range of the activation energy is 31.1%, and the maximum value of TP0 is reduced by 11.7℃.
-
Key words:
- aluminum particle size /
- thermobaric explosive /
- explosion /
- energy /
- thermal stability
-
表 1 温压炸药组分
Table 1. Components of thermobaric explosives
Sample HMX/% Oxidizing agent/% Binder desensitized agent/% Al/% ρ0/(g·cm-3) 40 nm 3 μm 35 μm 1 52.5 8 4.5 35 1.915 8 2 52.5 8 4.5 35 1.909 9 3 52.5 8 4.5 35 1.924 6 表 2 不同测点处的冲击波参数
Table 2. Shock wave parameters at different test points
Sample p/kPa i+/(Pa·s) 1.0 m 1.2 m 1.5 m 1.0 m 1.2 m 1.5 m 1 601.7 443.2 754.8 80.3 71.5 228.3 2 642.4 471.7 808.1 91.6 76.3 238.6 3 553.1 412.9 713.8 72.6 69.8 231.6 表 3 3种粒径铝粉的氧化程度
Table 3. Oxidation degree of aluminum with different particle sizes
Element Oxidation degree/% Sample 1 Sample 2 Sample 3 Al 84.24 90.57 93.29 Other 15.76 9.43 6.71 表 4 3组样品在不同升温速率下的DSC结果
Table 4. DSC results of 3 sets of samples at different heating rates
Sample β/(℃·min-1) M/mg Decomposition process T0/℃ Tp/℃ 1 2 0.72 271.6 273.4 4 0.70 276.6 278.7 8 0.69 280.4 284.0 10 0.71 281.0 285.5 2 2 0.70 274.1 276.4 4 0.69 277.3 279.5 8 0.71 279.9 284.6 10 0.71 280.4 285.6 3 2 0.69 276.6 277.9 4 0.71 278.1 280.1 8 0.69 279.6 284.9 10 0.73 280.6 285.8 表 5 3组样品的动力学参数
Table 5. Kinetic parameters of 3 sets of samples
Sample E/(kJ·mol-1) lg A r Tp0/℃ Tb/℃ 1 331.2 77.9 0.999 8 265.3 267.1 2 421.7 97.6 0.994 3 273.6 275.1 3 480.9 117.8 0.990 8 277.0 278.3 -
[1] AE W G.Aspects of thermobaric weaponry[J].ADF Health, 2003, 4(4):3-6. https://www.researchgate.net/publication/27257415_Aspects_of_Thermobaric_Weaponry [2] 赵新颖, 王伯良, 李席, 等.温压炸药爆炸冲击波在爆炸堡内的传播规律[J].含能材料, 2016, 24(3):231-237. doi: 10.11943/j.issn.1006-9941.2016.03.004ZHAO X Y, WANG B L, LI X, et al.Shockwave propagation characteristics of thermobaric explosive in an explosion chamber[J].Chinese Journal of Energetic Materials, 2016, 24(3):231-237. doi: 10.11943/j.issn.1006-9941.2016.03.004 [3] 金朋刚, 郭炜, 王建灵, 等.不同粒度铝粉在HMX基炸药中的能量释放特性[J].含能材料, 2015, 23(10):989-993. doi: 10.11943/j.issn.1006-9941.2015.10.013JIN P G, GUO W, WANG J L, et al.Energy releasing characteristics of aluminum powder in HMX-based explosives[J].Chinese Journal of Energetic Materials, 2015, 23(10):989-993. doi: 10.11943/j.issn.1006-9941.2015.10.013 [4] MURAVYEV N, FROLOV Y, PIVKINA A, et al.Influence of particle size and mixing technology on combustion of HMX/Al composition[J].Propellants Explosives Pyrotechnics, 2010, 35(3):226-232. doi: 10.1002/prep.v35:3 [5] 李媛媛, 南海.半密闭条件下爆炸场的温度与压力测量[J].火炸药学报, 2008, 31(1):48-52. http://www.cqvip.com/qk/90400B/200801/27636326.htmlLI Y Y, NAN H.Detonation field temperature and pressure test under semi-enclosed condition[J].Chinese Journal of Explosives and Propellants, 2008, 31(1):48-52. http://www.cqvip.com/qk/90400B/200801/27636326.html [6] 李媛媛, 王建灵, 徐洪涛.Al-HMX混合炸药爆炸场温度的实验研究[J].含能材料, 2008, 16(3):241-243. http://www.cnki.com.cn/Article/CJFDTotal-HNCL200803000.htmLI Y Y, WANG J L, XU H T.Experimental study on blasting temperature of Al-HMX compound explosive[J].Chinese Journal of Energetic Materials, 2008, 16(3):241-243. http://www.cnki.com.cn/Article/CJFDTotal-HNCL200803000.htm [7] 苗勤书, 徐更光, 王廷增.铝粉粒度和形状对含铝炸药性能的影响[J].火炸药学报, 2002, 25(3):4-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hzyxb200202002MIAO Q S, XU G G, WANG T Z.Influence of aluminum particle size on energy output characteristics andthermal stability of emulsion explosive[J].Chinese Journal of Explosives and Propellants, 2002, 25(3):4-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hzyxb200202002 [8] 段晓瑜, 郭学永, 焦清介, 等.铝粉粒度和铝氧比对含铝炸药在密闭空间内爆炸特性的影响[J].含能材料, 2017, 6(5):472-478. http://www.doc88.com/p-5015640641914.htmlDUAN X Y, GUO X Y, JIAO Q J, et al.Effect of aluminum size and content on explosive performance of aluminized explosives in confined space[J].Chinese Journal of Energetic Materials, 2017, 6(5):472-478. http://www.doc88.com/p-5015640641914.html [9] 赵凤起, 陈沛, 杨栋, 等.纳米金属粉对RDX热分解特性的影响[J].南京理工大学学报, 2001, 25(4):420-423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njlgdxxb200104020ZHAO F Q, CHEN P, YANG D, et al.Effects of nanometer metal powders on thermal decomposition characteristics of RDX[J].Journal of Nanjing University of Science and Technology, 2001, 25(4):420-423. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njlgdxxb200104020 [10] 梁磊, 王晶禹, 董军.纳米铝粉对硝铵炸药热分解催化性能的影响[J].火炸药学报, 2009, 32(6):75-78. http://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&filename=BGXB200906018&dbname=CJFD2009LIANG L, WANG J Y, DONG J.Effects of nano-Al powder on the thermal decomposition catalytic performance of nitroamine explosives[J].Chinese Journal of Explosives and Propellants, 2009, 32(6):75-78. http://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&filename=BGXB200906018&dbname=CJFD2009 [11] ZHU Y L, HUANG H, REN H, et al.Influence of aluminum particle size on thermal decomposition of RDX[J].Journal of Energetic Materials, 2013, 31(3):178-191. doi: 10.1080/07370652.2012.688788 [12] MEI X, JIAO Q, ZHU Y, et al.Thermal study of HNIW (CL-20) and mixtures containing aluminum powder[J].Journal of Thermal Analysis & Calorimetry, 2014, 116(3):1159-1163. doi: 10.1007/s10973-013-3625-y.pdf [13] 夏先贵, 柏劲松, 林其文, 等.含铝炸药起爆机理的研究[J].含能材料, 1997, 7(3):133-136. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hncl199903009&dbname=CJFD&dbcode=CJFQXIA X G, BAI J S, LIN Q W, et al.A study on initiation mechanism of Al containing explosive[J].Chinese Journal of Energetic Materials, 1997, 7(3):133-136. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hncl199903009&dbname=CJFD&dbcode=CJFQ [14] RAI A, PARK K, ZHOU L, et al.Understanding the mechanism of aluminum nanoparticle oxidation[J].Combustion Theory and Modelling, 2006, 10(5):843-859. doi: 10.1080/13647830600800686 [15] 李鸿宾, 金朋刚, 郭炜, 等.炸药在密闭空间中爆炸超压测试与分析[J].科学技术与工程, 2013, 13(28):8448-8451. doi: 10.3969/j.issn.1671-1815.2013.28.041LI H B, JIN P G, GUO W, et al.Overpressure test and analysis of TNT blast in confined chamber[J].Science Technologyand Engineering, 2013, 13(28):8448-8451. doi: 10.3969/j.issn.1671-1815.2013.28.041 [16] 裴明敬, 胡华权, 陈立强, 等.铝粉在温压炸药爆炸过程中的响应分析[J].火炸药学报, 2013, 36(4):7-12. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bgxb201304002&dbname=CJFD&dbcode=CJFQPEI M J, HU H Q, CEHN L Q, et al.The behavior of aluminum powder in thermobaric explosive detonating[J].Chinese Journal of Explosives and Propellants, 2013, 36(4):7-12. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bgxb201304002&dbname=CJFD&dbcode=CJFQ [17] 冯晓军, 王晓峰, 李媛媛, 等.铝粉粒度和爆炸环境对含铝炸药爆炸能量的影响[J].火炸药学报2013, 36(6):24-27. http://www.cqvip.com/QK/90400B/201306/48228428.htmlFENG X J, WANG X F, LI Y Y, et al.Effect of aluminum particle size and explosion atmosphere on the energy of explosion of aluminized explosive[J].Chinese Journal of Explosives and Propellants, 2013, 36(6):24-27. http://www.cqvip.com/QK/90400B/201306/48228428.html [18] 黄亚峰, 田轩, 冯博, 等.真空环境下铝粉粒度与形状对RDX基炸药爆炸场压力和温度的影响[J].含能材料, 2016, 24(2):144-148. doi: 10.11943/j.issn.1006-9941.2016.02.006HUANG Y X, TIAN X, FENG B, et al.Effect of particle size and shape of aluminum powder on the explosion field pressure and temperature of RDX-based explosion in vacuum environment[J].Chinese Journal of Energetic Materials, 2016, 24(2):144-148. doi: 10.11943/j.issn.1006-9941.2016.02.006 [19] 龚悦, 汪旭光, 何杰, 等.铝粉粒度对乳化炸药能量输出特性及热安定性的影响[J].化工学报, 2017, 68(4):1721-1727. http://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&filename=HGSZ201704055&dbname=CJFDLAST2017GONG Y, WANG X G, HE J, et al.Influence of aluminum particle size on energy output characteristics and thermal stability of emulsion explosive[J].Journal of Chemical Engineering, 2017, 68(4):1721-1727. http://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&filename=HGSZ201704055&dbname=CJFDLAST2017 [20] LI H Q, AN C W, DU M Y, et al.Study on kinetic parameters of thermal decomposition reaction and thermal stability of 3, 4-bis(3-nitrofurazan-4-yl) furoxan based on kissinger method[J].Chinese Journal of Explosives & Propellants, 2016, 39(3):58-65. https://www.researchgate.net/publication/305375482_Study_on_kinetic_parameters_of_thermal_decomposition_reaction_and_thermal_stability_of_3_4-bis3-nitrofurazan-4-ylfuroxan_based_on_kissinger_method