Numerical Investigations of Perturbation Growth in Aluminum Flyer Driven by Explosion
doi: 10.11858/gywlxb.20170624
-
摘要: 建立了研究炸药爆轰驱动条件下金属材料Rayleigh-Taylor不稳定性问题的实验技术和数值模拟方法。利用该实验技术和数值模拟方法研究了炸药爆轰驱动条件下,铝飞层界面Rayleigh-Taylor不稳定性增长规律,数值模拟显示界面扰动振幅以指数规律增长。数值模拟结果和实验定性相符,但是定量相比有较大差别,原因是高压高应变率加载条件下铝的强度增强,而数值模拟时所采用的SG本构模型在这样的加载条件下低估了铝的强度而导致对扰动增长致稳作用不足。然后在数值模拟中,通过改变材料的初始剪切模量和初始屈服强度,发现在一定范围内,初始剪切模量对材料动态屈服强度没有影响,而初始屈服强度增大可以明显提高材料的动态屈服强度,达到抑制扰动增长的目的,表明材料屈服强度主导界面扰动增长。
-
关键词:
- 爆轰驱动 /
- Rayleigh-Taylor不稳定性 /
- 扰动增长 /
- 材料强度 /
- 致稳
Abstract: In this paper we developed an experimental technique and numerical simulation method that we then adopted to investigate the Rayleigh-Taylor instability in metallic materials driven by explosion.We studied experimentally and numerically the growth of the Rayleigh-Taylor instability in an explosion-driven aluminum flyer and showed that the perturbation amplitude growth follows an exponential law over time.The numerical results agree with the experiment qualitatively, but not quantitatively.This is because the aluminum strengthens under high pressure and at high strain rate, and the Steinberg-Guinan constitutive model used in the simulations underestimates the strength of the aluminum as being not great enough to suppress the perturbation growth.By investigating numerically the effects of the initial shear modulus and the initial yield strength on the development of the Rayleigh-Taylor instability of the metallic material, we also found that the initial shear modulus in a specified range does not affect the dynamic yield strength and the increase in the initial yield strength can improve the dynamic yield strength significantly to stabilize the perturbation growth.In other words, the material strength dominates the interface perturbation growth.-
Key words:
- explosion-driven /
- Rayleigh-Taylor instability /
- perturbation growth /
- material strength /
- stabilize
-
Table 1. Equation of state parameters of JO-9159 explosive
ρ/(g·cm-3) pCJ/GPa DCJ/(km·s-1) A/GPa B/GPa R1 R2 ω 1.86 36 8.862 934.8 12.7 4.6 1.1 0.37 Table 2. Mie-Grüneisen equation of state parameters of aluminum
ρ/(g·cm-3) c/(km·s-1) γ0 a S1 S2 S3 2.703 5.22 1.97 0.47 1.37 0 0 Table 3. Steinberg-Guinan constitutive model parameters of aluminum
Y0/GPa Ymax/GPa G0/GPa β n A/GPa-1 B/(10-3K-1) 0.29 0.68 27.6 125 0.1 0.0652 0.616 -
[1] RAYLEIGH L.Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density[J].Proceedings London Mathematical Society, 1883, 14(1):170-177. http://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=631996 [2] TAYLOR G I.The instability of liquid surfaces when accelerated in a direction perpendicular to their plane[J].Proceedings of the Royal Society of London, Series A, 1950, 201(1065):192-196. doi: 10.1098/rspa.1950.0052 [3] DIMONTE G, TERRONES G, CHERNE F J, et al.Use of the Richtmyer-Meshkov instability to infer yield stress at high-energy densities[J].Physical Review Letters, 2011, 107(26):264502. doi: 10.1103/PhysRevLett.107.264502 [4] PARK H S, REMINGTON B A, BECKER R C, et al.Strong stabilization of the Rayleigh-Taylor instability by material strength at megabar pressures[J].Physics of Plasmas, 2010, 17(5):056314. doi: 10.1063/1.3363170 [5] MCCRORY R L, MONTIERTH L, MORSE R L, et al.Nonlinear evolution of ablation-driven Rayleigh-Taylor instability[J].Physical Review Letters, 1981, 46(5):336-339. doi: 10.1103/PhysRevLett.46.336 [6] KIFONIDIS K, PLEWA T, SCHECK L, et al.Non-spherical core collapse supernovae Ⅱ.The late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987A[J].Astron Astrophys, 2006, 453:661-678. doi: 10.1051/0004-6361:20054512 [7] MAC LOW M M, ZAHNLE K.Explosion of comet shoemaker-levy 9 on entry into the jovian atmosphere[J].The Astrophysical Journal, 1994, 434:L33-L36. doi: 10.1086/187565 [8] MOLNAR P, HOUSEMAN G A, CONRAD C P.Rayleigh-Taylor instability and convective thinning of mechanically thickened lithosphere:effects of non-linear viscosity decreasing exponentially with depth and of horizontal shortening of the layer[J].Geophysical Journal International, 1998, 133(3):568-584. doi: 10.1046/j.1365-246X.1998.00510.x [9] MILES J W. Taylor instability of a flat plate, General atomic division of general dynamics: GAMD-7335[R]. 1966. [10] WHITE G N. A one-degree-of-freedom model for the Tayloy instability of an ideally plastic metal plate: LA-5225-MS[R]. Los Alamos, NM: Los Alamos National Laboratory, 1973. [11] ROBINSON A C, SWEGLE J W.Acceleration instability in elastic-plastic solids Ⅱ.Analytical techniques[J].Journal of Applied Physics, 1989, 66(7):2859-2872. doi: 10.1063/1.344191 [12] PIRIZ A R, LÓPEZ CELA J J, CORTÁZAR O D, et al.Rayleigh-Taylor instability in elastic solids[J].Physical Review E, 2005, 72(5):056313. doi: 10.1103/PhysRevE.72.056313 [13] PIRIZ A R, LÓPEZ CELA J J, TAHIR N A.Rayleigh-Taylor instability in elastic-plastic solids[J].Journal of Applied Physics, 2009, 105(11):116101. doi: 10.1063/1.3139267 [14] BARNES J F, BLEWETT P J, MCQUEEN R G, et al.Taylor instability in solids[J].Journal of Applied Physics, 1974, 45(2):727-732. doi: 10.1063/1.1663310 [15] GRAHAM L M J, CAVALLO R M, LORENZ K T, et al. Aluminum Rayleigh Taylor strength measurements and calculations[C]//10th International Workshop on Physics of Compressible Turbulent Mixing. Paris, France, 2006. [16] OLSON R T, CERRETA E K, MORRIS C, et al.The effect of microstructure on Rayleigh-Taylor instability growth in solids[J].Journal of Physics:Conference Series, 2014, 500:112048. doi: 10.1088/1742-6596/500/11/112048 [17] HENRY DE FRAHAN M T, BELOF J L, CAVALLO R M, et al.Experimental and numerical investigations of beryllium strength models using the Rayleigh-Taylor instability[J].Journal of Applied Physics, 2015, 117(22):225901. doi: 10.1063/1.4922336 [18] APRELKOV O N, IGNATOVA O N, IGONIN V V, et al. Twinning and dynamic strength of copper during high-rate strain[C]//Shock Compression of Condensed Matter-AIP Conference Proceedings, 2007, 955(1): 619-622. [19] IGONIN V V, IGNATOVA O N, LEBEDEV A I, et al. Influence of dynamic properties on perturbation growth in tantalum[C]//Shock Compression of Condensed Matter-AIP Conference Proceedings, 2010, 1195(1): 1085-1088. [20] SLUTZ S A, HERRMANN M C, VESEY R A, et al.Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J].Physics Plasmas, 2010, 17(5):056303. doi: 10.1063/1.3333505 [21] MCBRIDE R D, SLUTZ S A, JENNINGS C A, et al.Penetrating radiography of imploding and stagnating beryllium liners on the Z accelerator[J].Physical Review Letters, 2012, 109(13):135004. doi: 10.1103/PhysRevLett.109.135004 [22] LORENZ K T, EDWARDS M J, GLENDINNING S G, et al.Accessing ultrahigh-pressure, quasi-isentropic states of matter[J].Physics Plasmas, 2005, 12(5):056309. doi: 10.1063/1.1873812 [23] REMINGTON B A, PARK H S, PRISBREY S T, et al. Progress towards materials science above 1000 GPa (10 Mbar) on the NIF laser: LLNL-CONF-411555[R]. Livermore, CA: Lawrence Livermore National Laboratory, 2009. [24] BELOF J L, CAVALLO R M, OLSON R T, et al. Rayleigh-Taylor strength experiments of the pressure-induced phase transition in iron: LLNL-PROC-492911[R]. Livermore, CA: Lawrence Livermore National Laboratory, 2011. [25] PIRIZ A R, LÓPEZ CELA J J, TAHIR N A.Richtmyer-Meshkov instability as a tool for evaluating material strength under extreme conditions[J].Nuclear Instruments and Methods in Physics Research Section A, 2009, 606(1/2):139-141. https://www.sciencedirect.com/science/article/pii/S0168900209005646 [26] ATCHISON W L, ZOCHER M A, KAUL A M.Studies of material constitutive behavior using perturbation growth in explosive and magnetically driven liner systems[J].Russian Journal of Physical Chemistry B, 2008, 2(3):387-401. doi: 10.1134/S199079310803010X [27] PARK H S, BARTON N, BELOF J L, et al. Experimental results of tantalum material strength at high pressure and high strain rate[C]//AIP Conference Proceedings, 2012, 1426(1): 1371-1374. [28] BAI J S, WANG B, WANG T, et al.Numerical simulation of the Richtmyer-Meshkov instability in initially nonuniform flows and mixing with reshock[J].Physical Review E, 2012, 86(6):066319. doi: 10.1103/PhysRevE.86.066319 [29] WANG T, TAO G, BAI J S, et al.Numerical comparative analysis of Richtmyer-Meshkov instability simulated by different SGS models[J].Canadian Journal of Physics, 2015, 93(5):519-525. doi: 10.1139/cjp-2014-0099 [30] WANG T, LI P, BAI J S, et al.Large-eddy simulation of the Richtmyer-Meshkov instability[J].Canadian Journal of Physics, 2015, 93(10):1124-1130. doi: 10.1139/cjp-2014-0652