Numerical Investigations of Perturbation Growth in Aluminum Flyer Driven by Explosion

WANG Tao BAI Jingsong CAO Renyi WANG Bing ZHONG Min LI Ping TAO Gang

王涛, 柏劲松, 曹仁义, 汪兵, 钟敏, 李平, 陶钢. 爆轰驱动铝飞层扰动增长的数值模拟[J]. 高压物理学报, 2018, 32(3): 032301. doi: 10.11858/gywlxb.20170624
引用本文: 王涛, 柏劲松, 曹仁义, 汪兵, 钟敏, 李平, 陶钢. 爆轰驱动铝飞层扰动增长的数值模拟[J]. 高压物理学报, 2018, 32(3): 032301. doi: 10.11858/gywlxb.20170624
WANG Tao, BAI Jingsong, CAO Renyi, WANG Bing, ZHONG Min, LI Ping, TAO Gang. Numerical Investigations of Perturbation Growth in Aluminum Flyer Driven by Explosion[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 032301. doi: 10.11858/gywlxb.20170624
Citation: WANG Tao, BAI Jingsong, CAO Renyi, WANG Bing, ZHONG Min, LI Ping, TAO Gang. Numerical Investigations of Perturbation Growth in Aluminum Flyer Driven by Explosion[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 032301. doi: 10.11858/gywlxb.20170624

Numerical Investigations of Perturbation Growth in Aluminum Flyer Driven by Explosion

doi: 10.11858/gywlxb.20170624
Funds: 

Science Challenge Project TZ2016001

National Natural Science Foundation of China 11372294

National Natural Science Foundation of China 11532012

National Natural Science Foundation of China 11672277

More Information
    Corresponding author: WANG Tao(1979-), male, master, major in computational mechanics.E-mail:wtao_mg@163.com
  • 摘要: 建立了研究炸药爆轰驱动条件下金属材料Rayleigh-Taylor不稳定性问题的实验技术和数值模拟方法。利用该实验技术和数值模拟方法研究了炸药爆轰驱动条件下,铝飞层界面Rayleigh-Taylor不稳定性增长规律,数值模拟显示界面扰动振幅以指数规律增长。数值模拟结果和实验定性相符,但是定量相比有较大差别,原因是高压高应变率加载条件下铝的强度增强,而数值模拟时所采用的SG本构模型在这样的加载条件下低估了铝的强度而导致对扰动增长致稳作用不足。然后在数值模拟中,通过改变材料的初始剪切模量和初始屈服强度,发现在一定范围内,初始剪切模量对材料动态屈服强度没有影响,而初始屈服强度增大可以明显提高材料的动态屈服强度,达到抑制扰动增长的目的,表明材料屈服强度主导界面扰动增长。

     

  • Figure  1.  Sketch of the experimental setup and sample

    Figure  2.  Comparisons of the perturbed interface between experiment and numerical simulations ((a) Experimental image, (b) Simulated image at normal strengths Y0 and G0, (c) Simulated image at 10 times the normal strengths Y0 and G0)

    Figure  3.  Pressure histories of crest and trough at the loading surface

    Figure  4.  Contours of local pressure (a), density (b), and temperature (c) at 6.36, 6.5, 6.7, 6.9, 7.1, and 7.3 μs from left to right and top to bottom after the arrival of detonation products at the loading surface

    Figure  5.  Growth histories of the perturbation amplitude

    Figure  6.  Time histories of the free surface velocity (a) and displacement (b)

    Figure  7.  Time histories of strain at the crest and trough of the loading surface

    Figure  8.  Time histories of yield strength at the crest and trough of the loading surface

    Figure  9.  Growth histories of the perturbation amplitude for different values of initial shear modulus (a) and yield strength (b)

    Figure  10.  Time histories of strain at the trough of the loading surface for different values of initial shear modulus (a) and yield strength (b)

    Figure  11.  Time histories of yield strength at the trough of the loading surface for different values of initial shear modulus (a) and yield strength (b)

    Table  1.   Equation of state parameters of JO-9159 explosive

    ρ/(g·cm-3) pCJ/GPa DCJ/(km·s-1) A/GPa B/GPa R1 R2 ω
    1.86 36 8.862 934.8 12.7 4.6 1.1 0.37
    下载: 导出CSV

    Table  2.   Mie-Grüneisen equation of state parameters of aluminum

    ρ/(g·cm-3) c/(km·s-1) γ0 a S1 S2 S3
    2.703 5.22 1.97 0.47 1.37 0 0
    下载: 导出CSV

    Table  3.   Steinberg-Guinan constitutive model parameters of aluminum

    Y0/GPa Ymax/GPa G0/GPa β n A/GPa-1 B/(10-3K-1)
    0.29 0.68 27.6 125 0.1 0.0652 0.616
    下载: 导出CSV
  • [1] RAYLEIGH L.Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density[J].Proceedings London Mathematical Society, 1883, 14(1):170-177. http://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=631996
    [2] TAYLOR G I.The instability of liquid surfaces when accelerated in a direction perpendicular to their plane[J].Proceedings of the Royal Society of London, Series A, 1950, 201(1065):192-196. doi: 10.1098/rspa.1950.0052
    [3] DIMONTE G, TERRONES G, CHERNE F J, et al.Use of the Richtmyer-Meshkov instability to infer yield stress at high-energy densities[J].Physical Review Letters, 2011, 107(26):264502. doi: 10.1103/PhysRevLett.107.264502
    [4] PARK H S, REMINGTON B A, BECKER R C, et al.Strong stabilization of the Rayleigh-Taylor instability by material strength at megabar pressures[J].Physics of Plasmas, 2010, 17(5):056314. doi: 10.1063/1.3363170
    [5] MCCRORY R L, MONTIERTH L, MORSE R L, et al.Nonlinear evolution of ablation-driven Rayleigh-Taylor instability[J].Physical Review Letters, 1981, 46(5):336-339. doi: 10.1103/PhysRevLett.46.336
    [6] KIFONIDIS K, PLEWA T, SCHECK L, et al.Non-spherical core collapse supernovae Ⅱ.The late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987A[J].Astron Astrophys, 2006, 453:661-678. doi: 10.1051/0004-6361:20054512
    [7] MAC LOW M M, ZAHNLE K.Explosion of comet shoemaker-levy 9 on entry into the jovian atmosphere[J].The Astrophysical Journal, 1994, 434:L33-L36. doi: 10.1086/187565
    [8] MOLNAR P, HOUSEMAN G A, CONRAD C P.Rayleigh-Taylor instability and convective thinning of mechanically thickened lithosphere:effects of non-linear viscosity decreasing exponentially with depth and of horizontal shortening of the layer[J].Geophysical Journal International, 1998, 133(3):568-584. doi: 10.1046/j.1365-246X.1998.00510.x
    [9] MILES J W. Taylor instability of a flat plate, General atomic division of general dynamics: GAMD-7335[R]. 1966.
    [10] WHITE G N. A one-degree-of-freedom model for the Tayloy instability of an ideally plastic metal plate: LA-5225-MS[R]. Los Alamos, NM: Los Alamos National Laboratory, 1973.
    [11] ROBINSON A C, SWEGLE J W.Acceleration instability in elastic-plastic solids Ⅱ.Analytical techniques[J].Journal of Applied Physics, 1989, 66(7):2859-2872. doi: 10.1063/1.344191
    [12] PIRIZ A R, LÓPEZ CELA J J, CORTÁZAR O D, et al.Rayleigh-Taylor instability in elastic solids[J].Physical Review E, 2005, 72(5):056313. doi: 10.1103/PhysRevE.72.056313
    [13] PIRIZ A R, LÓPEZ CELA J J, TAHIR N A.Rayleigh-Taylor instability in elastic-plastic solids[J].Journal of Applied Physics, 2009, 105(11):116101. doi: 10.1063/1.3139267
    [14] BARNES J F, BLEWETT P J, MCQUEEN R G, et al.Taylor instability in solids[J].Journal of Applied Physics, 1974, 45(2):727-732. doi: 10.1063/1.1663310
    [15] GRAHAM L M J, CAVALLO R M, LORENZ K T, et al. Aluminum Rayleigh Taylor strength measurements and calculations[C]//10th International Workshop on Physics of Compressible Turbulent Mixing. Paris, France, 2006.
    [16] OLSON R T, CERRETA E K, MORRIS C, et al.The effect of microstructure on Rayleigh-Taylor instability growth in solids[J].Journal of Physics:Conference Series, 2014, 500:112048. doi: 10.1088/1742-6596/500/11/112048
    [17] HENRY DE FRAHAN M T, BELOF J L, CAVALLO R M, et al.Experimental and numerical investigations of beryllium strength models using the Rayleigh-Taylor instability[J].Journal of Applied Physics, 2015, 117(22):225901. doi: 10.1063/1.4922336
    [18] APRELKOV O N, IGNATOVA O N, IGONIN V V, et al. Twinning and dynamic strength of copper during high-rate strain[C]//Shock Compression of Condensed Matter-AIP Conference Proceedings, 2007, 955(1): 619-622.
    [19] IGONIN V V, IGNATOVA O N, LEBEDEV A I, et al. Influence of dynamic properties on perturbation growth in tantalum[C]//Shock Compression of Condensed Matter-AIP Conference Proceedings, 2010, 1195(1): 1085-1088.
    [20] SLUTZ S A, HERRMANN M C, VESEY R A, et al.Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J].Physics Plasmas, 2010, 17(5):056303. doi: 10.1063/1.3333505
    [21] MCBRIDE R D, SLUTZ S A, JENNINGS C A, et al.Penetrating radiography of imploding and stagnating beryllium liners on the Z accelerator[J].Physical Review Letters, 2012, 109(13):135004. doi: 10.1103/PhysRevLett.109.135004
    [22] LORENZ K T, EDWARDS M J, GLENDINNING S G, et al.Accessing ultrahigh-pressure, quasi-isentropic states of matter[J].Physics Plasmas, 2005, 12(5):056309. doi: 10.1063/1.1873812
    [23] REMINGTON B A, PARK H S, PRISBREY S T, et al. Progress towards materials science above 1000 GPa (10 Mbar) on the NIF laser: LLNL-CONF-411555[R]. Livermore, CA: Lawrence Livermore National Laboratory, 2009.
    [24] BELOF J L, CAVALLO R M, OLSON R T, et al. Rayleigh-Taylor strength experiments of the pressure-induced phase transition in iron: LLNL-PROC-492911[R]. Livermore, CA: Lawrence Livermore National Laboratory, 2011.
    [25] PIRIZ A R, LÓPEZ CELA J J, TAHIR N A.Richtmyer-Meshkov instability as a tool for evaluating material strength under extreme conditions[J].Nuclear Instruments and Methods in Physics Research Section A, 2009, 606(1/2):139-141. https://www.sciencedirect.com/science/article/pii/S0168900209005646
    [26] ATCHISON W L, ZOCHER M A, KAUL A M.Studies of material constitutive behavior using perturbation growth in explosive and magnetically driven liner systems[J].Russian Journal of Physical Chemistry B, 2008, 2(3):387-401. doi: 10.1134/S199079310803010X
    [27] PARK H S, BARTON N, BELOF J L, et al. Experimental results of tantalum material strength at high pressure and high strain rate[C]//AIP Conference Proceedings, 2012, 1426(1): 1371-1374.
    [28] BAI J S, WANG B, WANG T, et al.Numerical simulation of the Richtmyer-Meshkov instability in initially nonuniform flows and mixing with reshock[J].Physical Review E, 2012, 86(6):066319. doi: 10.1103/PhysRevE.86.066319
    [29] WANG T, TAO G, BAI J S, et al.Numerical comparative analysis of Richtmyer-Meshkov instability simulated by different SGS models[J].Canadian Journal of Physics, 2015, 93(5):519-525. doi: 10.1139/cjp-2014-0099
    [30] WANG T, LI P, BAI J S, et al.Large-eddy simulation of the Richtmyer-Meshkov instability[J].Canadian Journal of Physics, 2015, 93(10):1124-1130. doi: 10.1139/cjp-2014-0652
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  7369
  • HTML全文浏览量:  2680
  • PDF下载量:  174
出版历程
  • 收稿日期:  2017-08-01
  • 修回日期:  2017-08-30

目录

    /

    返回文章
    返回