预应力对陶瓷抗侵彻性能影响规律的数值模拟

吴雪 张先锋 丁力 谈梦婷 包阔 陈贝贝

吴雪, 张先锋, 丁力, 谈梦婷, 包阔, 陈贝贝. 预应力对陶瓷抗侵彻性能影响规律的数值模拟[J]. 高压物理学报, 2018, 32(4): 044101. doi: 10.11858/gywlxb.20170610
引用本文: 吴雪, 张先锋, 丁力, 谈梦婷, 包阔, 陈贝贝. 预应力对陶瓷抗侵彻性能影响规律的数值模拟[J]. 高压物理学报, 2018, 32(4): 044101. doi: 10.11858/gywlxb.20170610
WU Xue, ZHANG Xianfeng, DING Li, TAN Mengting, BAO Kuo, CHEN Beibei. Numerical Simulation of the Effect of Pre-stress on the Ballistic Performance of Ceramics[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 044101. doi: 10.11858/gywlxb.20170610
Citation: WU Xue, ZHANG Xianfeng, DING Li, TAN Mengting, BAO Kuo, CHEN Beibei. Numerical Simulation of the Effect of Pre-stress on the Ballistic Performance of Ceramics[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 044101. doi: 10.11858/gywlxb.20170610

预应力对陶瓷抗侵彻性能影响规律的数值模拟

doi: 10.11858/gywlxb.20170610
基金项目: 

国家自然科学基金 11772159

中组部青年拔尖人才支持计划 2014

中央高校基本科研业务专项基金 30917011104

中央高校基本科研业务专项基金 30916011305

详细信息
    作者简介:

    吴雪(1991-), 女, 硕士研究生, 主要从事冲击动力学研究.E-mail:wuxue0911@163.com

    通讯作者:

    张先锋(1978-), 男, 博士, 教授, 主要从事高效毁伤与防护研究

  • 中图分类号: O385

Numerical Simulation of the Effect of Pre-stress on the Ballistic Performance of Ceramics

  • 摘要: 为研究预应力陶瓷的抗侵彻性能,利用AUTODYN仿真软件模拟了对SiC陶瓷施加预应力的过程,并开展了长杆弹以不同速度侵彻预应力陶瓷的数值仿真研究,确定了预应力陶瓷的抗侵彻性能。通过对比分析,得到了不同载荷下陶瓷内部的应力分布状态,以及陶瓷抗侵彻性能与预应力的关系。结果表明:对陶瓷施加预应力可以有效提高其抗侵彻能力;但随着加载预应力的进一步提高,即当陶瓷中心部位预应力大于112MPa时,陶瓷的抗侵彻能力反而下降,陶瓷加载的预应力与其抗侵彻性能之间存在最佳匹配关系。

     

  • 图  陶瓷预应力加载模型

    Figure  1.  Applying pre-stress on ceramic

    图  长杆弹侵彻预应力陶瓷模型

    Figure  2.  Long-rod projectile penetrating ceramic

    图  陶瓷预应力加载过程

    Figure  3.  Pre-stress loading process of ceramic

    图  预应力加载过程中陶瓷内部应力云图

    Figure  4.  Stress in ceramic during pre-stress process

    图  陶瓷中心点应力-时间曲线

    Figure  5.  Stress-time curves of ceramic at the center point

    图  高斯点分布

    Figure  6.  Positions of Gaussian points

    图  陶瓷内部不同高斯点处应力分布

    Figure  7.  Stress curves at different Gaussian points inside the ceramic

    图  数值模拟与实验[20]所得DOP对比

    Figure  8.  Comparison of DOP between simulation and experimental results[20]

    图  侵彻过程中陶瓷内部应力分布云图

    Figure  9.  Stress cloud in ceramic during penetration process

    图  10  长杆弹头位移随时间变化曲线

    Figure  10.  Displacement variations of log-rod projectile over time

    图  11  DOP随速度、压缩比的变化

    Figure  11.  DOP vs. impact velocity and compression ratio

  • [1] 刘桂武, 倪长也, 金峰, 等.陶瓷/金属复合装甲抗弹约束效应述评[J].西安交通大学学报, 2011, 45(3):7-15, 24. doi: 10.7652/xjtuxb201103002

    LIU G W, NI C Y, JIN F, et al.Review of anti-ballistic confinement effecs of ceramic-metal composite armor[J].Journal of Xi'an Jiaotong University, 2011, 45(3):7-15, 24. doi: 10.7652/xjtuxb201103002
    [2] 高举贤, 吴玉炎, 白蓉裳, 等.陶瓷防弹性能的研究[J].弹箭与制导学报, 1986(2):7-17. http://mall.cnki.net/magazine/Article/ZGGT201006004.htm
    [3] 王为民, 傅正义, 张金咏, 等. 陶瓷材料抗超高速弹丸的侵彻过程研究[C]//中国空间科学学会空间材料专业委员会2012学术交流会议论文(摘要)集, 2012.
    [4] LASALVIA J C, MCCAULEY J W.Inelastic deformation mechanisms and damage in structural ceramics subjected to high-velocity impact[J].International Journal of Applied Ceramic Technology, 2010, 7(5):595-605. doi: 10.1111/ijac.2010.7.issue-5
    [5] SHERMAN D.Impact failure mechanisms in alumina tiles on finite thickness support and the effect of confinement[J].International Journal of Impact Engineering, 2000, 24(3):313-328. doi: 10.1016/S0734-743X(99)00147-5
    [6] MEYER H W, KLEPONIS D S.Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration[J].International Journal of Impact Engineering, 2001, 26(1):509-521. https://www.deepdyve.com/lp/elsevier/modeling-the-high-strain-rate-behavior-of-titanium-undergoing-PFjFhl7cic
    [7] 李平, 李大红, 宁建国, 等.Al2O3陶瓷复合靶抗长杆弹侵彻性能和机理实验研究[J].爆炸与冲击, 2003, 23(4):289-294. http://image.sciencenet.cn/olddata/kexue.com.cn/upload/blog/file/2010/8/2010828175240976253.xls

    LI P, LI D H, NING J G, et al.Experimental study on the ballistic performance and mechanism of confined ceramic targets against long rod penetrators[J].Explosion and Shock Waves, 2003, 23(4):289-294. http://image.sciencenet.cn/olddata/kexue.com.cn/upload/blog/file/2010/8/2010828175240976253.xls
    [8] 井玉安, 果世驹, 韩静涛.钢/Al2O3陶瓷/钢轻型复合装甲板抗弹性能[J].北京科技大学学报, 2007, 29(4):402-407. http://subject.wanfangdata.com.cn/xstjbg/2010/gyjs4.html

    JING Y A, GUO S J, HAN J T.Ballistic property of steel/ceramic/steel composite armor[J].Journal of University of Science and Technology Beijing, 2007, 29(4):402-407. http://subject.wanfangdata.com.cn/xstjbg/2010/gyjs4.html
    [9] CHI R, SERJOUEI A, SRIDHAR I, et al.Pre-stress effect on confined ceramic armor ballistic performance[J].International Journal of Impact Engineering, 2015, 84:159-170. doi: 10.1016/j.ijimpeng.2015.05.011
    [10] HOLMQUIST T J, JOHNSON G R.Response of silicon carbide to high velocity impact[J].Journal of Applied Physics, 2002, 91(9):5858-5866. doi: 10.1063/1.1468903
    [11] 谈梦婷, 张先锋, 何勇, 等.长杆弹撞击装甲陶瓷的界面击溃效应数值模拟[J].兵工学报, 2016, 37(4):627-634. http://www.cnki.com.cn/Article/CJFDTotal-JSJZ201502002.htm

    TAN M T, ZHANG X F, HE Y, et al.Numerical simulation on interface defeat of ceramic armor impacted by long-rod projectile[J].Acta Armamentarii, 2016, 37(4):627-634. http://www.cnki.com.cn/Article/CJFDTotal-JSJZ201502002.htm
    [12] ZHU D, YAN S, LI B.Single-grit modeling and simulation of crack initiation and propagation in SiC grinding using maximum undeformed chip thickness[J].Computational Materials Science, 2014, 92:13-21. doi: 10.1016/j.commatsci.2014.05.019
    [13] HOLMQUIST T J, JOHNSON G R.Characterization and evaluation of silicon carbide for high-velocity impact[J].Journal of Applied Physics, 2005, 97(9):093502. doi: 10.1063/1.1881798
    [14] CRONIN D S, BUI K, KAUFMANN C, et al. Implementation and validation of the Johnson-Holmquist ceramic material model in LS-DYNA[C]//Proceedings of 4th European LS-DYNA Users Conference. Ontario, Canada: University of Waterloo, 2003, 1: 47-60.
    [15] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the 7th International Symposium on Ballistics, 1983, 21: 541-547.
    [16] LUNDBERG P, RENSTRÖM R, LUNDBERG B.Impact of conical tungsten projectiles on flat silicon carbide targets:transition from interface defeat to penetration[J].International Journal of Impact Engineering, 2006, 32(11):1842-1856. doi: 10.1016/j.ijimpeng.2005.04.004
    [17] LEE J K. Analysis of multi-layered materials under high velocity impact using CTH[D]. Air Force Institute of Technology Wright-Patterson AFB OH, Graduate School of Engineering and Management, 2008. https://aps.ieee.org/news/53-education/323-past-distinguished-lecturer-appointments
    [18] JOHNSON G R, COOK W H.Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J].Engineering Fracture Mechanics, 1985, 21(1):31-48. doi: 10.1016/0013-7944(85)90052-9
    [19] HOLMQUIST T J, JOHNSON G R.Modeling prestressed ceramic and its effect on ballistic performance[J].International Journal of Impact Engineering, 2005, 31(2):113-127. doi: 10.1016/j.ijimpeng.2003.11.002
    [20] SERJOUEI A, GOUR G, ZHANG X, et al.On improving ballistic limit of bi-layer ceramic/metal armor[J].International Journal of Impact Engineering, 2017, 105:54-67. doi: 10.1016/j.ijimpeng.2016.09.015
  • 加载中
图(11)
计量
  • 文章访问数:  7237
  • HTML全文浏览量:  3063
  • PDF下载量:  226
出版历程
  • 收稿日期:  2017-07-06
  • 修回日期:  2017-07-20

目录

    /

    返回文章
    返回