Structure and Properties of Novel Superhard C5N:A First-Principles Study
doi: 10.11858/gywlxb.20170606
-
摘要: 通过使用在晶体结构预测方面成熟的粒子群优化算法,提出了6种化学计量比为5:1的氮化碳新相。采用基于密度泛函理论的第一性原理计算研究它们的结构、稳定性、机械性能和电子性质。计算结果表明,在提出的6种结构中,P62m-C5N是能量最稳定的。弹性常数和声子谱计算表明,这些结构在0 GPa时是机械稳定和动力学稳定的。电子计算显示,I41-C5N是金属性的,而其他5种结构是半导体。维氏硬度计算表明,除I41-C5N外,其余氮化碳都为超硬材料。通过形成焓计算,分析认为这6种结构能在目前实验所能达到的高压下合成(19~83 GPa)。Abstract: By using the developed particle swarm optimization algorithm on the crystal structural prediction, we proposed 6 novel carbon nitride phases with a 5:1 stoichiometry.Their structures, stability, mechanical and electronic properties were investigated by first-principle calculations with the density functional theory.Our calculations indicate that P62m-C5N is energetically favorable in the 6 structures.Both elastic constants and phonon-dispersion calculations show that these structures remain mechanically and dynamically stable at 0 GPa.Electronic calculations indicate that I41-C5N is metallic while the other 5 are semiconductive.The Vickers hardness shows that all the 6 structures are superhard materials except for I41-C5N.Formation enthalpy calculations suggest that these 6 structures can be synthesized at attainable high pressures (19-83 GPa).
-
Key words:
- carbon nitride /
- first-principle calculations /
- superhard /
- high shear modulus
-
Table 1. Structure parameters of the newly predicted C5N
Phase Crystal system Space group Atoms positions Lattice parameters/
nmDensity/
(g·cm-3)Cell volume/
nm3P62m-C5N Hexagonal P62m C:6i (0.6686, 0, 0.6851)
C:4h (0.3333, 0.6667, 0.1846)
N:2e (0, 0, 0.2520)a=0.42610
c=0.449043.48366 0.0706056 I41-C5N Tetragonal I41 C:8b (1.3922, 0.3047, 0.2213)
C:8b (0.8888, 0.3025, 0.5651)
C:4a (0.5000, -0.5000, 0.6649)
N:4a (0.5000, -0.5000, 0.3717)a=0.56554
c=0.461993.32925 0.147761 Pbcn-C5N Orthorhombic Pbcn C:8d (0.8394, 1.1859, 0.6653)
C:8d (0.9443, 0.5105, 1.3780)
C:8d (0.7272, 1.4193, 1.3967)
C:8d (1.4165, 1.4451, 0.5433)
C:4c (0.5000, 1.3491, 0.7500)
C:4c (0.5000, 0.8125, 0.7500)
N:8d (1.3159, 0.7079, 1.4033)a=0.69219
b=0.75985
c=0.552513.38559 0.290603 P63cm-C5N Hexagonal P63cm C:12d (0.1549, 0.4103, 0.8667)
C:12d (0.4099, 0.1542, 0.6931)
C:6c (0.7822, 0, 0.6486)
C:4b (0.3333, 0.6667, 0.1247)
C:4b (0.3333, 0.6667, 0.9413)
C:2a (0, 0, 0.4143)
N:6c (0.7847, 0, 0.9101)
N:2a (0, 0, 0.1519)a=0.61546
c=0.943323.17945 0.309444 P212121-C5N Orthorhombic P212121 C:4a (-0.4660, 0.3648, 0.0251)
C:4a (-0.0356, 0.4140, 0.7846)
C:4a (0.4082, 0.7553, 0.4943)
C:4a (-0.3026, 0.2316, 0.4965)
C:4a (-0.3414, 0.7023, 0.9899)
C:4a (0.4321, 0.3975, 0.5198)
C:4a (-0.4450, 0.6928, 0.4812)
C:4a (0.1246, 0.4389, 0.5229)
C:4a (0.3131, 0.9248, 0.4703)
C:4a (-0.0722, 0.9907, 0.4778)
N:4a (-0.2536, 0.8681, 0.9885)
N:4a (-0.2860, 0.6001, 0.0557)a=0.80449
b=1.40889
c=0.256593.3830 0.290827 Pna21-C5N Orthorhombic Pna21 C:4a (0.6262, 0.2909, 0.7966)
C:4a (0.6669, 0.4999, 0.8488)
C:4a (0.4457, 0.1191, 0.1296)
C:4a (0.3513, 0.0085, 0.1102)
C:4a (0.4412, 0.8115, 0.8592)
C:4a (0.1030, 0.1609, 0.0666)
C:4a (0.9757, 0.2005, 0.3318)
C:4a (0.2617, 0.1527, 0.5419)
C:4a (0.7486, 0.6235, 0.4587)
C:4a (0.3119, 0.0399, 0.6076)
N:4a (0.3225, 0.4796, 0.8604)
N:4a (0.7712, 0.2000, 0.7768)a=0.40299
b=1.40205
c=0.516403.3720 0.291776 Table 2. Calculated independent elastic constants Cij of the newly predicted C5N
Phase C11/
GPaC22/
GPaC33/
GPaC44/
GPaC55/
GPaC66/
GPaC12/
GPaC13/
GPaC15/
GPaC23/
GPaC25/
GPaP62m-C5N 1194 930 252 113 18 I41-C5N 649 931 244 247 244 75 Pbcn-C5N 762 663 822 382 360 364 190 83 165 P63cm-C5N 873 490 192 170 35 P212121-C5N 902 847 893 299 341 347 120 93 40 902 847 Pna21-C5N 891 659 736 289 372 324 86 153 149 891 659 Table 3. Calculated bulk modulus B, shear modulus G, Young's modulus E and Vickers hardness Hv ofthe newly predicted C5N (Also shown are G/B ratio and Poisson's ratio σ)
Phase B/GPa G/GPa E/GPa σ G/B Hv/GPa P62m-C5N 397 394 888 0.127 0.992 62.5 I41-C5N 335 238 577 0.213 0.711 30.0 Pbcn-C5N 347 338 765 0.133 0.973 55.0 P63cm-C5N 286 267 611 0.144 0.934 44.5 P212121-C5N 349 354 794 0.121 1.014 59.6 Pna21-C5N 338 321 731 0.139 0.949 51.6 -
[1] LÉGER J-M, HAINES J.The search for superhard materials[J]. Endeavour, 1997, 21(3):121-124. doi: 10.1016/S0160-9327(97)80221-9 [2] LIU A Y, COHEN M L.Prediction of new low compressibility solids[J]. Science, 1989, 245(4920):841-842. doi: 10.1126/science.245.4920.841 [3] LIU A Y, COHEN M L.Structural properties and electronic structure of low-compressibility materials:β-Si3N4 and hypothetical β-C3N4[J]. Physical Review B, 1990, 41(15):10727-10734. doi: 10.1103/PhysRevB.41.10727 [4] CÔTÉAND M, COHEN M L.Carbon nitride compounds with 1:1 stoichiometry[J]. Physical Review B, 1997, 55(9):5684. doi: 10.1103/PhysRevB.55.5684 [5] HALES J, BARNARD A S.Thermodynamic stability and electronic structure of small carbon nitride nanotubes[J]. Journal of Physics:Condensed Matter, 2009, 21(14):144203. doi: 10.1088/0953-8984/21/14/144203 [6] KIM E, CHEN C, KÖHLER T, et al.Tetragonal crystalline carbon nitrides:theoretical predictions[J]. Physical Review Letters, 2001, 86(4):652-655. doi: 10.1103/PhysRevLett.86.652 [7] KIM E, CHEN C.Stability of tetragonal crystalline carbon nitrides:the nitrogen content dependence[J]. Physics Letters A, 2001, 282(6):415-420. doi: 10.1016/S0375-9601(01)00200-6 [8] HART J N, CLAEYSSENS F, ALLAN N L, et al.Carbon nitride:ab initio investigation of carbon-rich phases[J]. Physical Review B, 2009, 80(17):174111. doi: 10.1103/PhysRevB.80.174111 [9] SANDRÉ É, PICKARD C J, COLLIEX C.What are the possible structures for CNx ompounds?The example of C3N[J]. Chemical Physics Letters, 2000, 325(1/2/3):53-60. http://www.sciencedirect.com/science/article/pii/S000926140000539X [10] TIAN F, WANG J, HE Z, et al.Superhard semiconducting C3N2 compounds predicted via first-principles calculations[J]. Physical Review B, 2008, 78(23):235431. doi: 10.1103/PhysRevB.78.235431 [11] WANG X.Polymorphic phases of sp3-hybridized superhard CN[J]. The Journal of Chemical Physics, 2012, 137(18):184506. doi: 10.1063/1.4765324 [12] ZHANG M, WEI Q, YAN H, et al.A novel superhard tetragonal carbon mononitride[J]. The Journal of Physical Chemistry C, 2014, 118(6):3202-3208. doi: 10.1021/jp409152t [13] LI Q, LIU H, ZHOU D, et al.A novel low compressible and superhard carbon nitride:body-centered tetragonal CN2[J]. Physical Chemistry Chemical Physics, 2012, 14(37):13081-13087. doi: 10.1039/c2cp41694h [14] XU Y, GAO S P.Band gap of C3N4 in the GW approximation[J]. International Journal of Hydrogen Energy, 2012, 37(15):11072-11080. doi: 10.1016/j.ijhydene.2012.04.138 [15] GUO L P, CHEN Y, WANG E G, et al.Identification of a new tetragonal C-N phase[J]. Journal of Crystal Growth, 1997, 178(4):639-644. doi: 10.1016/S0022-0248(96)01067-6 [16] SEKINE T, KANDA H, BANDO Y, et al.A graphitic carbon nitride[J]. Journal of Materials Science Letters, 1990, 9(12):1376-1378. doi: 10.1007/BF00721588 [17] STEVENS A J, KOGA T, AGEE C B, et al.Stability of carbon nitride materials at high pressure and temperature[J]. Journal of the American Chemical Society, 1996, 118(44):10900-10901. doi: 10.1021/ja9625182 [18] STEVENS A J, AGEE C B, LIEBER C M. High-pressure chemistry of carbon nitride materials[J/OL]. MRS Online Proceedings Library, 1997, 499: 309(2011-02-01)[2017-06-29]. https://doi.org/10.1557/PROC-499-309. [19] CHEN Y A, GUO L, WANG E G.Alpha beta experimental evidence for alpha-and beta-phases of pure crystalline C3N4 in films deposited on nickel substrates[J]. Philosophical Magazine Letters, 1997, 75(3):155-162. doi: 10.1080/095008397179714 [20] NIU C, LU Y Z, LIEBER C M.Experimental realization of the covalent solid carbon nitride[J]. Science, 1993, 261(5119):334-337. doi: 10.1126/science.261.5119.334 [21] YU K M, COHEN M L, HALLER E E, et al.Observation of crystalline C3N4[J]. Physical Review B, 1994, 49(7):5034-5037. doi: 10.1103/PhysRevB.49.5034 [22] YIN L W, LI M S, LIU Y X, et al.Synthesis of beta carbon nitride nanosized crystal through mechanochemical reaction[J]. Journal of Physics:Condensed Matter, 2003, 15(2):309-314. doi: 10.1088/0953-8984/15/2/330 [23] GUO Q, XIE Y, WANG X, et al.Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures[J]. Chemical Physics Letters, 2003, 380(1/2):84-87. https://www.sciencedirect.com/science/article/pii/S0009261403015525 [24] JÜRGENS B, IRRAN E, SENKER J, et al.Melem (2, 5, 8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride:synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies[J]. Journal of the American Chemical Society, 2003, 125(34):10288-10300. doi: 10.1021/ja0357689 [25] STAVROU E, LOBANOV S, DONG H, et al.Synthesis of ultra-incompressible sp3-hybridized carbon nitride with 1:1 stoichiometry[J]. Chemistry of Materials, 2016, 28(19):6925-6933. doi: 10.1021/acs.chemmater.6b02593 [26] WANG Y, LV J, ZHU L, et al.Crystal structure prediction via particle-swarm optimization[J]. Physical Review B, 2010, 82(9):094116. doi: 10.1103/PhysRevB.82.094116 [27] SEGALL M D, PHILIP J D L, PROBERT M J, et al.First-principles simulation:ideas, illustrations and the CASTEP code[J]. Journal of Physics:Condensed Matter, 2002, 14(11):2717-2744. doi: 10.1088/0953-8984/14/11/301 [28] KOHN W, SHAM L J.Self-consistent equations including exchange and correlation effects[J]. Physical Review A, 1965, 140(4):1133-1138. http://tu-freiberg.de/sites/default/files/media/institut-fuer-theoretische-physik-10451/Lehre/Dichtefunktionaltheorie/a9rf1a3.pdf [29] HOHENBERG P, KOHN W.Inhomogeneous electron gas[J]. Physical Review B, 1964, 136(3):864-871. http://www.researchgate.net/publication/235563075_Inhomogeneous_Electron_Gas [30] JONES R O, GUNNARSSON O.The density functional formalism, its applications and prospects[J]. Reviews of Modern Physics, 1989, 61(3):689-746. doi: 10.1103/RevModPhys.61.689 [31] MONKHORST H J, PACK J D.Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12):5188-5192. doi: 10.1103/PhysRevB.13.5188 [32] FISCHER T H, ALMLOF J.General methods for geometry and wave function optimization[J]. The Journal of Physical Chemistry, 1992, 96(24):9768-9774. doi: 10.1021/j100203a036 [33] CLARK S J, SEGALL M D, PICKARD C J, et al.First principles methods using CASTEP[J]. Zeitschrift für Kristallographie-Crystalline Materials, 2005, 220(5/6):567-570. http://ci.nii.ac.jp/naid/10026643729 [34] HILL R.The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society:Section A, 1952, 65(5):349. doi: 10.1088/0370-1298/65/5/307 [35] VENABLES J A, ENGLISH C A.Electron diffraction and the structure of α-N2[J]. Acta Crystallographica Section B:Structural Science, Crystal Engineering and Materials, 1974, 30:929-935. doi: 10.1107/S0567740874004067 [36] WU Z J, ZHAO E J, XIANG H P, et al.Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles[J]. Physical Review B, 2007, 76(5):054115. doi: 10.1103/PhysRevB.76.054115 [37] CHEN X Q, NIU H, LI D, et al.Modeling hardness of polycrystalline materials and bulk metallic glasses[J]. Intermetallics, 2011, 19(9):1275-1281. doi: 10.1016/j.intermet.2011.03.026 [38] TIAN Y, XU B, ZHAO Z.Microscopic theory of hardness and design of novel superhard crystals[J]. International Journal of Refractory Metals and Hard Materials, 2012, 33:93-106. doi: 10.1016/j.ijrmhm.2012.02.021