Influence of Impedance Matching between Prefabricated Fragments and Light Shell on Initial Velocity and Completeness of Fragments
-
摘要: 依据杀伤战斗部装药对破片爆轰加载过程的特征,设计了与其较为相似的滑移爆轰单元结构实验模型,采用闪光X射线照相方法获得了预制破片和轻质壳体在两种典型排布顺序下的破片初速及破损情况,并结合应力波传播理论对实验结果进行了分析。结果表明:破片外置时,初始应力波由低阻抗金属材料向高阻抗金属材料传播,破片受到壳体传入的冲击波及空气传入的拉伸波作用,初速较高,轻微破损;破片内置时,初始应力波由高阻抗金属材料向低阻抗金属材料传播,虽然破片受到爆轰产物传入的冲击波及壳体反射的拉伸波作用,但初速相对偏低,易发生破损,甚至有明显层裂现象。Abstract: According to the characteristics of the detonation loading process in prefabricated fragment warhead, we designed the sliding detonation unit test model, and obtained the initial velocity and the damage of the prefabricated fragments and light shell under two typical arrangements by the X-ray photographic method, and analyzed the influence of different impedance matching structures on the accelerating character at the same time.The results show that the initial velocity of the prefabricated fragments situated outside the shell (sequential impedance matching structure) with slight damage is relatively high, whereas that of the prefabricated fragments situated inside the shell (reverse impedance matching structure) with stratification cracks is relatively low.
-
Key words:
- fragment warhead /
- prefabricated fragment /
- light shell /
- initial velocity /
- X-ray photographic
-
表 1 不同工况下的破片及壳体速度
Table 1. Velocity of fragments and shell under different conditions
Working condition Shell Fragments k v/(m·s-1) k v/(m·s-1) Tungsten fragments situated outside aluminum shell 0.126 983 0.126 983 Tungsten fragments situated inside aluminum shell 0.143 1 115 0.110 858 Material ρ/(g·cm-3) c0/(km·s-1) λ Tungsten alloy 17.5 3.832 1.497 Aluminum alloy 2.785 5.238 1.338 表 3 材料界面处的状态参数
Table 3. State parameters of material interfaces
Interface No. u/(km·s-1) p/GPa ① 0.931 16.82 ② 0.385 29.70 ③ 0.770 ④ 0.310 23.30 ⑤ 0.502 8.26 ⑥ 1.004 -
[1] 卢芳云, 蒋邦海, 李翔宇, 等.武器战斗部投射与毁伤[M].北京:科学出版社, 2013. [2] DRUMMOND W E.Explosive induced shock wave.Part Ⅰ.plane shock waves[J].Journal of Applied Physics, 2004, 28(12):1437-1441. https://www.researchgate.net/publication/224537576_Explosive_Induced_Shock_Waves_Part_I_Plane_Shock_Waves [3] RAM O, SADOT O.A simple constitutive model for prodicting the pressure histories developed behind rigid porous media impinged by shock wave[J].Journal of Fluid Mechanics, 2013, 718:507-523. doi: 10.1017/jfm.2012.627 [4] 李卫平, 孙红, 张海丰.基于ALE方法的预制破片战斗部数值研究[J].弹箭与制导学报, 2012, 32(6):93-95. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200708002004.htmLI W P, SUN H, ZHANG H F.Numerical simulation of prefabricated-fragment warheads exploding based on ALE method[J].Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(6):93-95. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200708002004.htm [5] MARK S, SCOTT I J.Dynamics of high sound-speed metal confiners driven by non-ideal high-explosive detonation[J].Combustion and Flames, 2015, 162:1857-1867. doi: 10.1016/j.combustflame.2014.12.007 [6] MOSTERT F J, SNYMAN I M, OLIVIER M. An experimental technique to characterize the dynamic response of materials, or material combinations, to explosive blast[C]//26th International Symposium on Ballistics. Miami: International Ballistics Society, 2011: 1334-1337. http://adsabs.harvard.edu/abs/2011JAM....78e1008M [7] LINDSAY C M, BUTLER G C, RUMCHIK C G, et al.Increasing the utility of the copper cylinder expansion test[J].Propellants, Explosives, Pyrotechnics, 2010, 35(5):433-439. doi: 10.1002/prep.201000072 [8] 沈飞, 王辉, 袁建飞, 等.铝含量对RDX基含铝炸药驱动能力的影响[J].火炸药学报, 2013, 36(3):50-53. http://www.cnki.com.cn/Article/CJFDTotal-BGXB201502014.htmSHEN F, WANG H, YUAN J F, et al.Influence of Al content on the driving ability of RDX-based aluminized explosives[J].Chinese Journal of Explosives and Propellants, 2013, 36(3):50-53. http://www.cnki.com.cn/Article/CJFDTotal-BGXB201502014.htm [9] 奥尔连科Л П. 爆炸物理学[M]. 孙承纬, 译. 北京: 科学出版社, 2011. [10] 经福谦, 陈俊祥.动高压原理与技术[M].北京:科学出版社, 2006.