预制破片与轻质壳体阻抗匹配对破片初速及完整性的影响

周涛 沈飞 王辉

周涛, 沈飞, 王辉. 预制破片与轻质壳体阻抗匹配对破片初速及完整性的影响[J]. 高压物理学报, 2018, 32(4): 045104. doi: 10.11858/gywlxb.20170602
引用本文: 周涛, 沈飞, 王辉. 预制破片与轻质壳体阻抗匹配对破片初速及完整性的影响[J]. 高压物理学报, 2018, 32(4): 045104. doi: 10.11858/gywlxb.20170602
ZHOU Tao, SHEN Fei, WANG Hui. Influence of Impedance Matching between Prefabricated Fragments and Light Shell on Initial Velocity and Completeness of Fragments[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 045104. doi: 10.11858/gywlxb.20170602
Citation: ZHOU Tao, SHEN Fei, WANG Hui. Influence of Impedance Matching between Prefabricated Fragments and Light Shell on Initial Velocity and Completeness of Fragments[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 045104. doi: 10.11858/gywlxb.20170602

预制破片与轻质壳体阻抗匹配对破片初速及完整性的影响

doi: 10.11858/gywlxb.20170602
基金项目: 

国防基础预研项目 00402020202

详细信息
    作者简介:

    周涛(1979-), 男, 博士, 副研究员, 主要从事爆炸力学及战斗部设计研究.E-mail:zt2756@sohu.com

  • 中图分类号: O389;TJ760.2

Influence of Impedance Matching between Prefabricated Fragments and Light Shell on Initial Velocity and Completeness of Fragments

  • 摘要: 依据杀伤战斗部装药对破片爆轰加载过程的特征,设计了与其较为相似的滑移爆轰单元结构实验模型,采用闪光X射线照相方法获得了预制破片和轻质壳体在两种典型排布顺序下的破片初速及破损情况,并结合应力波传播理论对实验结果进行了分析。结果表明:破片外置时,初始应力波由低阻抗金属材料向高阻抗金属材料传播,破片受到壳体传入的冲击波及空气传入的拉伸波作用,初速较高,轻微破损;破片内置时,初始应力波由高阻抗金属材料向低阻抗金属材料传播,虽然破片受到爆轰产物传入的冲击波及壳体反射的拉伸波作用,但初速相对偏低,易发生破损,甚至有明显层裂现象。

     

  • 图  预制破片与轻质壳体的典型放置工况

    Figure  1.  Typical arrangements of prefabricated fragments and light shell

    图  圆筒试验中圆筒壁膨胀速度-时间历程

    Figure  2.  Time histories of expansionvelocity of cylinder wall

    图  滑移爆轰驱动破片示意

    Figure  3.  Sketch of sliding detonation-driven fragments

    图  破片飞散轨迹示意

    Figure  4.  Flying trajectory of fragments

    图  实验布局

    Figure  5.  Experiment layout

    图  实验所获底片

    Figure  6.  Experimental film

    图  底片判读结果

    Figure  7.  Results from experimental film

    图  不同介质间应力波传播分析(①~⑥为界面编号)

    Figure  8.  Analysis of stress wave transmission betweendifferent materials (①-⑥:Interface No.)

    表  1  不同工况下的破片及壳体速度

    Table  1.   Velocity of fragments and shell under different conditions

    Working condition Shell Fragments
    k v/(m·s-1) k v/(m·s-1)
    Tungsten fragments situated outside aluminum shell 0.126 983 0.126 983
    Tungsten fragments situated inside aluminum shell 0.143 1 115 0.110 858
    下载: 导出CSV

    表  2  金属材料参数[9]

    Table  2.   Parameters of metals[9]

    Material ρ/(g·cm-3) c0/(km·s-1) λ
    Tungsten alloy 17.5 3.832 1.497
    Aluminum alloy 2.785 5.238 1.338
    下载: 导出CSV

    表  3  材料界面处的状态参数

    Table  3.   State parameters of material interfaces

    Interface No. u/(km·s-1) p/GPa
    0.931 16.82
    0.385 29.70
    0.770
    0.310 23.30
    0.502 8.26
    1.004
    下载: 导出CSV
  • [1] 卢芳云, 蒋邦海, 李翔宇, 等.武器战斗部投射与毁伤[M].北京:科学出版社, 2013.
    [2] DRUMMOND W E.Explosive induced shock wave.Part Ⅰ.plane shock waves[J].Journal of Applied Physics, 2004, 28(12):1437-1441. https://www.researchgate.net/publication/224537576_Explosive_Induced_Shock_Waves_Part_I_Plane_Shock_Waves
    [3] RAM O, SADOT O.A simple constitutive model for prodicting the pressure histories developed behind rigid porous media impinged by shock wave[J].Journal of Fluid Mechanics, 2013, 718:507-523. doi: 10.1017/jfm.2012.627
    [4] 李卫平, 孙红, 张海丰.基于ALE方法的预制破片战斗部数值研究[J].弹箭与制导学报, 2012, 32(6):93-95. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200708002004.htm

    LI W P, SUN H, ZHANG H F.Numerical simulation of prefabricated-fragment warheads exploding based on ALE method[J].Journal of Projectiles, Rockets, Missiles and Guidance, 2012, 32(6):93-95. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-AGLU200708002004.htm
    [5] MARK S, SCOTT I J.Dynamics of high sound-speed metal confiners driven by non-ideal high-explosive detonation[J].Combustion and Flames, 2015, 162:1857-1867. doi: 10.1016/j.combustflame.2014.12.007
    [6] MOSTERT F J, SNYMAN I M, OLIVIER M. An experimental technique to characterize the dynamic response of materials, or material combinations, to explosive blast[C]//26th International Symposium on Ballistics. Miami: International Ballistics Society, 2011: 1334-1337. http://adsabs.harvard.edu/abs/2011JAM....78e1008M
    [7] LINDSAY C M, BUTLER G C, RUMCHIK C G, et al.Increasing the utility of the copper cylinder expansion test[J].Propellants, Explosives, Pyrotechnics, 2010, 35(5):433-439. doi: 10.1002/prep.201000072
    [8] 沈飞, 王辉, 袁建飞, 等.铝含量对RDX基含铝炸药驱动能力的影响[J].火炸药学报, 2013, 36(3):50-53. http://www.cnki.com.cn/Article/CJFDTotal-BGXB201502014.htm

    SHEN F, WANG H, YUAN J F, et al.Influence of Al content on the driving ability of RDX-based aluminized explosives[J].Chinese Journal of Explosives and Propellants, 2013, 36(3):50-53. http://www.cnki.com.cn/Article/CJFDTotal-BGXB201502014.htm
    [9] 奥尔连科Л П. 爆炸物理学[M]. 孙承纬, 译. 北京: 科学出版社, 2011.
    [10] 经福谦, 陈俊祥.动高压原理与技术[M].北京:科学出版社, 2006.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  6608
  • HTML全文浏览量:  2833
  • PDF下载量:  286
出版历程
  • 收稿日期:  2017-07-06
  • 修回日期:  2017-07-20

目录

    /

    返回文章
    返回