应用于高压科学研究的国产铰链式六面顶压机技术发展历程

彭放 贺端威

彭放, 贺端威. 应用于高压科学研究的国产铰链式六面顶压机技术发展历程[J]. 高压物理学报, 2018, 32(1): 010105. doi: 10.11858/gywlxb.20170600
引用本文: 彭放, 贺端威. 应用于高压科学研究的国产铰链式六面顶压机技术发展历程[J]. 高压物理学报, 2018, 32(1): 010105. doi: 10.11858/gywlxb.20170600
PENG Fang, HE Duanwei. Development of Domestic Hinge-Type Cubic Presses Based on High Pressure Scientific Research[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010105. doi: 10.11858/gywlxb.20170600
Citation: PENG Fang, HE Duanwei. Development of Domestic Hinge-Type Cubic Presses Based on High Pressure Scientific Research[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010105. doi: 10.11858/gywlxb.20170600

应用于高压科学研究的国产铰链式六面顶压机技术发展历程

doi: 10.11858/gywlxb.20170600
详细信息
    作者简介:

    彭放(1960-), 男, 博士, 教授, 博士生导师, 主要从事高压科学与凝聚态物理研究. E-mail:pengfang@scu.edu.cn

    通讯作者:

    贺端威(1969-), 男, 博士, 教授, 博士生导师, 主要从事高压物理、超硬材料、大腔体静高压技术研究.E-mail:duanweihe@scu.edu.cn

  • 中图分类号: O521.3

Development of Domestic Hinge-Type Cubic Presses Based on High Pressure Scientific Research

  • 摘要: 国产铰链式六面顶压机是我国独立发展起来的大腔体高压装置,经过50多年的不断发展,在工业高压合成和高压科学研究领域取得了丰硕成果,在国际上占据一席之地。本文仅以四川大学高压科学与技术实验室在国产铰链式六面顶压机应用于高压科学研究的技术研发为镜,展示国产铰链式六面顶压机大腔体高压装置在应用于高压科学研究领域的发展历程和技术特点,以利于该装置在今后的研发过程中继续保持和发挥其独特性能,为我国工业高压合成和高压科学研究发挥更大的作用。

     

  • 图  芶清泉(前排中间)、洪时明(后排右一)和若槻雅男(前排右一)

    Figure  1.  Gou Qingquan (seated at the center), Hong Shiming (standing, first from the right), and Masao Wakatsuki (seated, first from the right) and their research team

    图  实现上下独立加压的国产六面顶压机(a)及其顶锤压力变化曲线(b)

    Figure  2.  Domestic-made cubic presses implemented the function of independent loading in the vertical direction (a) and oil pressure-time history (b)

    图  国外2-6-8型增压装置[13-14]

    Figure  3.  Foreign-made pressurized device of 2-6-8 type[13-14]

    图  国产六面顶压机6-8型增压装置

    Figure  4.  Domestic-made pressurized device of 6-8 type cubic presses

    图  工业高温高压合成区域发展示意

    Figure  5.  Pressure-temperature diagram of industrial synthesis

  • [1] LIEBERMANN R C.Multi-anvil, high pressure apparatus:a half-century of development and progress[J]. High Pressure Research, 2011, 31(4):493-532. doi: 10.1080/08957959.2011.618698
    [2] KUNIMOTO T, IRIFUNE T. Pressure generation to 125 GPa using a 6-8-2 type multianvil apparatus with nano-polycrystalline diamond anvils[C]//Journal of Physics: Conference Series. IOP Publishing, 2010, 215(1): 012190.
    [3] KUNIMOTO T, IRIFUNE T, SUMIYA H.Pressure generation in a 6-8-2 type multi-anvil system:a performance test for third-stage anvils with various diamonds[J]. High Pressure Research, 2008, 28(3):237-244. doi: 10.1080/08957950802246530
    [4] SUMIYA H, IRIFUNE T.Indentation hardness of nano-polycrystalline diamond prepared from graphite by direct conversion[J]. Diamond and Related Materials, 2004, 13(10):1771-1776. doi: 10.1016/j.diamond.2004.03.002
    [5] SUMIYA H, HARANO K, IRIFUNE T.Ultrahard diamond indenter prepared from nanopolycrystalline diamond[J]. Review of Scientific Instruments, 2008, 79(5):056102. doi: 10.1063/1.2918985
    [6] SUMIYA H, IRIFUNE T.Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperature[J]. Journal of Materials Research, 2007, 22(8):2345-2351. doi: 10.1557/jmr.2007.0295
    [7] LE GUILLOU C, BRUNET F, IRIFUNE T, et al.Nanodiamond nucleation below 2 273 K at 15 GPa from carbons with different structural organizations[J]. Carbon, 2007, 45(3):636-648. doi: 10.1016/j.carbon.2006.10.005
    [8] IRIFUNE T, KURIO A, SAKAMOTO S, et al.Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature[J]. Physics of the Earth and Planetary Interiors, 2004, 143:593-600. https://www.sciencedirect.com/science/article/pii/S0031920104000780
    [9] DUBROVINSKY L, DUBROVINSKAIA N, BYKOVA E, et al.The most incompressible metal osmium at static pressures above 750 gigapascals[J]. Nature, 2015, 525(7568):226-229. doi: 10.1038/nature14681
    [10] 王福龙, 贺端威, 房雷鸣, 等.基于铰链式六面顶压机的二级6-8型大腔体静高压装置[J].物理学报, 2008, 57(9):5429-5434. doi: 10.7498/aps.57.5429

    WANG F L, HE D W, FANG L M, et al.Design and assembly of split-sphere high pressure apparatus based on the hinge-type cubic-anvil press[J]. Acta Physica Sinica, 2008, 57(9):5429-5434. doi: 10.7498/aps.57.5429
    [11] 方啸虎.中国超硬材料与制品50周年精选论文集[M].杭州:浙江大学出版社, 2014:23-31.
    [12] 王海阔. 基于国产六面顶压机增压装置的压力产生极限扩展与应用[D]. 成都: 四川大学, 2013.

    WANG H K. Devlopment and application of pressure generation techniques based on hinge-type cubic press[D]. Chengdu: Sichuan University, 2013.
    [13] WALKER D, CARPENTER M A, HITCH C M.Some simplifications to multianvil devices for high pressure experiments[J]. The American Mineralogist, 1990, 75(9/10):1020-1028. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/75/9-10/1020/42423/some-simplifications-to-multianvil-devices-for
    [14] OHTANI E, OKADA Y, KAGAWA N, et al. Development of a new guide-block system and high pressure and temperature generation[C]//Abstract of the 28th High Pressure Conference of Japan. Kobe, 1987: 222-223.
    [15] XU C, HE D W, WANG H K, et al.Nano-polycrystalline diamond formation under ultra-high pressure[J]. International Journal of Refractory Metals and Hard Materials, 2013, 36:232-237. doi: 10.1016/j.ijrmhm.2012.09.004
    [16] 王海阔, 贺端威, 许超, 等.复合型多晶金刚石末级压砧的制备并标定六面顶压机6-8型压腔压力至35 GPa[J].物理学报, 2013, 62(18):180703. doi: 10.7498/aps.62.180703

    WANG H K, HE D W, XU C, et al.Calibration of pressure to 35 GPa for the cubic press using the diamond-cemented carbide compound anvil[J]. Acta Physica Sinica, 2013, 62(18):180703. doi: 10.7498/aps.62.180703
    [17] LIU G D, KOU Z L, YAN X Z, et al.Submicron cubic boron nitride as hard as diamond[J]. Applied Physics Letters, 2015, 106(12):121901. doi: 10.1063/1.4915253
    [18] WANG P, HE D W, WANG L P, et al.Diamond-cBN alloy:a universal cutting material[J]. Applied Physics Letters, 2015, 107(10):101901. doi: 10.1063/1.4929728
  • 加载中
图(5)
计量
  • 文章访问数:  8363
  • HTML全文浏览量:  2903
  • PDF下载量:  741
出版历程
  • 收稿日期:  2017-06-26
  • 修回日期:  2017-09-26

目录

    /

    返回文章
    返回