桌面式激光驱动冲击波技术及其在含能材料分子反应机制研究中的应用

宋云飞 郑朝阳 吴红琳 郑贤旭 吴强 于国洋 杨延强

宋云飞, 郑朝阳, 吴红琳, 郑贤旭, 吴强, 于国洋, 杨延强. 桌面式激光驱动冲击波技术及其在含能材料分子反应机制研究中的应用[J]. 高压物理学报, 2018, 32(1): 010107. doi: 10.11858/gywlxb.20170599
引用本文: 宋云飞, 郑朝阳, 吴红琳, 郑贤旭, 吴强, 于国洋, 杨延强. 桌面式激光驱动冲击波技术及其在含能材料分子反应机制研究中的应用[J]. 高压物理学报, 2018, 32(1): 010107. doi: 10.11858/gywlxb.20170599
SONG Yunfei, ZHENG Zhaoyang, WU Honglin, ZHENG Xianxu, WU Qiang, YU Guoyang, YANG Yanqian. A Desktop Laser Driven Shock Wave Technique and Its Applications to Molecular Reaction Mechanism of Energetic Materials[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010107. doi: 10.11858/gywlxb.20170599
Citation: SONG Yunfei, ZHENG Zhaoyang, WU Honglin, ZHENG Xianxu, WU Qiang, YU Guoyang, YANG Yanqian. A Desktop Laser Driven Shock Wave Technique and Its Applications to Molecular Reaction Mechanism of Energetic Materials[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010107. doi: 10.11858/gywlxb.20170599

桌面式激光驱动冲击波技术及其在含能材料分子反应机制研究中的应用

doi: 10.11858/gywlxb.20170599
基金项目: 

国家自然科学基金 21673211

国家自然科学基金 11404307

科学挑战计划 2016001

详细信息
    作者简介:

    宋云飞(1983-), 男, 博士, 副研究员, 主要从事超快激光光谱技术研究. E-mail: songyunfei@caep.cn

    通讯作者:

    于国洋(1982-), 男, 博士, 副研究员, 主要从事含能材料在冲击加载下的分子响应特性研究. E-mail: yuguoyang2010@126.com

    杨延强(1967-), 男, 博士, 研究员, 主要从事含能材料分子反应动力学研究. E-mail: yqyang@caep.cn

  • 中图分类号: O521.3;O521.2

A Desktop Laser Driven Shock Wave Technique and Its Applications to Molecular Reaction Mechanism of Energetic Materials

  • 摘要: 利用小型化桌面式脉冲激光驱动冲击波可实现材料的快速动态加载,具有成本低、实验重复频率高、加载速率超高等特点。介绍了桌面式激光驱动冲击技术的研究工作,以及该技术在含能材料冲击点火分子反应机制研究中的应用。目前已搭建的纳秒激光驱动冲击波实验系统可以实现上升时间仅为几纳秒、峰值压力不小于2 GPa的超快动态加载,并发展了相应的冲击特性表征技术。利用该实验系统,研究了典型含能材料RDX的冲击感度,发现冲击高压导致的分子内电荷转移是影响材料感度的关键因素,高压下RDX分子杂环上的电子向NO2转移并导致硝基的反应感度增加。该研究成果为认识RDX的冲击反应机制提供了一定的实验依据。通过现有的以及即将开展的工作,希望能够建立一套完整的技术手段,为从分子层次上研究含能材料的冲击反应机理提供实验支持。

     

  • 图  激光加载动高压原理示意

    Figure  1.  Principle of laser loading dynamic high pressure

    图  激光驱动冲击波实验装置

    Figure  2.  Setup of laser driven shock wave technique

    图  蒽-环氧胶混合样品在激光加载条件下的时间分辨拉曼光谱及对应的样品层压力分布

    Figure  3.  Time-resolved Raman spectra of anthracene-adhesive sample under laser shock loading and the corresponding pressure distribution in the sample layer

    图  (a) 激光加载下RDX各拉曼模式的峰位移动趋势, (b)第一性原理计算得到的RDX单晶在0~1 GPa的拉曼频移

    Figure  4.  (a) Change of RDX Raman modes under laser shock loading; (b) Raman shift of RDX single crystal in the pressure range of 0-1 GPa obtained by first principle calculation

    图  RDX分子中各个化学键键长以及苯环和硝基上的电荷密度随压力增大的变化趋势

    Figure  5.  Changes of bond length in the RDX molecules and charge density on phenyl and nitro group with the increase of pressure

  • [1] 陈源福, 刘福生, 张宁超, 等.瞬态激光拉曼光谱测量系统及其在苯冲击压缩实验中的应用[J].高压物理学报, 2013, 27(4):505-510. doi: 10.11858/gywlxb.2013.04.006

    CHEN F Y, LIU F S, ZHANG N C, et al.Measurement system of transient raman spectroscopy and its application to benzene under shock compression [J].Chinese Journal of High Pressure Physics, 2013, 27(4):505-510. doi: 10.11858/gywlxb.2013.04.006
    [2] 文尚刚, 孙承纬, 赵锋, 等.多级爆轰驱动——研究超高速碰撞的一种新的加载技术[J].高压物理学报, 2000, 14(1):22-27. doi: 10.11858/gywlxb.2000.01.004

    WEN S G, SUN C W, ZHAO F, et al.Multi-stage detonation system-a new loading technology for studying hypervelocity impact [J].Chinese Journal of High Pressure Physics, 2000, 14(1):22-27. doi: 10.11858/gywlxb.2000.01.004
    [3] 孙承纬, 赵剑衡, 王桂吉, 等.磁驱动准等熵平面压缩和超高速飞片发射实验技术原理、装置及应用[J].力学进展, 2012, 42(2):206-219. doi: 10.6052/1000-0992-2012-2-20120208

    SUN C W, ZHAO J H, WANG G J, et al.Progress in magnetic loading techniques for isentropic compression experiments and ultra-high velocity flyer launching [J].Advances in Mechanics, 2012, 42(2):206-219. doi: 10.6052/1000-0992-2012-2-20120208
    [4] WINEY J M, GUPTA Y M.Shock-induced chemical changes in neat nitromethane:use of time-resolved Raman spectroscopy [J].The Journal of Physical Chemistry B, 1997, 101(50):10733-10743. doi: 10.1021/jp972588a
    [5] PATTERSON J E, DREGER Z A, GUPTA Y M.Shock wave-induced phase transition in RDX single crystals [J].The Journal of Physical Chemistry B, 2007, 111(37):10897-10904. doi: 10.1021/jp079502q
    [6] YANG Y Q, WANG S F, SUN Z Y, et al.Propagation of shock-induced chemistry in nanoenergetic materials:the first micrometer [J].Journal of Applied Physics, 2004, 95(7):3667-3676. doi: 10.1063/1.1652250
    [7] TOKMAKOFF A, FAYER M D, DLOTT D D.Chemical reaction initiation and hot-spot formation in shocked energetic molecular materials [J].The Journal of Physical Chemistry, 1993, 97(9):1901-1913. doi: 10.1021/j100111a031
    [8] SAKATA J, WIGHT C A.Shock-initiated chemistry of energetic materials [J].The Journal of Physical Chemistry, 1995, 99(17):6584-6588. doi: 10.1021/j100017a046
    [9] KUKLJA M M.On the initiation of chemical reactions by electronic excitations in molecular solids [J].Applied Physics A:Materials Science & Processing, 2003, 76(3):359-366. doi: 10.1007/s00339-002-1821-x
    [10] BHATTACHARYA A, BERNSTEIN E R.Nonadiabatic decomposition of gas-phase RDX through conical intersections:an ONIOM-CASSCF study [J].The Journal of Physical Chemistry A, 2011, 115(17):4135-4147. doi: 10.1021/jp109152p
    [11] CHEN S, TOLBERT W A, DLOTT D D.Direct measurement of ultrafast multiphonon up-pumping in high explosives [J].The Journal of Physical Chemistry, 1994, 98(32):7759-7766. doi: 10.1021/j100083a004
    [12] HONG X H, CHEN S, DLOTT D D.Ultrafast mode-specific intermolecular vibrational energy transfer to liquid nitromethane [J].The Journal of Physical Chemistry, 1995, 99(22):9102-9109. doi: 10.1021/j100022a023
    [13] KOENIG M, FARAL B, BOUDENNE J M, et al.Relative consistency of equations of state by laser driven shock waves [J].Physical Review Letters, 1995, 74(12):2260-2263. doi: 10.1103/PhysRevLett.74.2260
    [14] TAKAMATSU K, OZAKI N, TANAKA K A, et al.Equation-of-state measurements of polyimide at pressures up to 5.8 TPa using low-density foam with laser-driven shock waves [J].Physical Review E, 2003, 67(5):056406. doi: 10.1103/PhysRevE.67.056406
    [15] COTTET F, HALLOUIN M, ROMAIN J P, et al.Enhancement of a laser-driven shock wave up to 10 TPa by the impedance-match technique [J].Applied Physics Letters, 1985, 47(7):678-680. doi: 10.1063/1.96055
    [16] DEVAUX D, FABBRO R, TOLLIER L, et al.Generation of shock waves by laser-induced plasma in confined geometry [J].Journal of Applied Physics, 1993, 74(4):2268-2273. doi: 10.1063/1.354710
    [17] TAS G, FRANKEN J, HAMBIR S A, et al.Ultrafast Raman spectroscopy of shock fronts in molecular solids [J].Physical Review Letters, 1997, 78(24):4585-4588. doi: 10.1103/PhysRevLett.78.4585
    [18] SONG Y F, ZHENG X X, YU G Y, et al.The characteristics of laser-driven shock wave investigated by time-resolved Raman spectroscopy [J].Journal of Raman Spectroscopy, 2011, 42(3):345-348. doi: 10.1002/jrs.v42.3
    [19] YU G Y, ZHENG X X, SONG Y F, et al.Observation of laser-driven shock propagation by nanosecond time-resolved Raman spectroscopy [J].Journal of Applied Physics, 2015, 117(3):033102. doi: 10.1063/1.4906211
    [20] DANG N C, DREGER Z A, GUPTA Y M, et al.Time-resolved spectroscopic measurements of shock-wave induced decomposition in cyclotrimethylene trinitramine (RDX) crystals:anisotropic response [J].The Journal of Physical Chemistry A, 2010, 114(43):11560-11566. doi: 10.1021/jp106892c
    [21] DEAK J C, IWAKI L K, DLOTT D D.Vibrational energy redistribution in polyatomic liquids:ultrafast IR-Raman spectroscopy of nitromethane [J].The Journal of Physical Chemistry A, 1999, 103(8):971-979. doi: 10.1021/jp9839899
  • 加载中
图(5)
计量
  • 文章访问数:  9242
  • HTML全文浏览量:  3401
  • PDF下载量:  489
出版历程
  • 收稿日期:  2017-06-26
  • 修回日期:  2017-07-11

目录

    /

    返回文章
    返回